References

1. R.K. Newman and C.W. Newman, Cereal Foods World, 36 (1991) 800.

2. L. Munck, in P. R. Shewry, (ed.), Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, C.A.B International, Wallingford, UK, 1992 p. 573.

4. C.M. Duffus and M.P. Cochrane, in A. W. MacGregor and R. S. Bhatty (eds.), Barley: Chemistry and Technology, American Association of Cereal Chemists, Inc., St. Paul, MN, 1993 p. 31.

5. D.D. Cass and W.A. Jensen, Am. J. Bot., 47 (1970) 62.

6. T.A. Steeves and I.M. Sussex, Patterns in Plant Development, Cambridge University Press, Cambridge, UK, ed. 2, 1989.

7. C. Dumas and H.L. Morgensen, Plant Cell, 5 (1993) 1337.

8. G.L. Stebbins, Flowering Plants: Evolution Above the Species Level., Harvard University Press, Cambridge, MA, USA, 1974.

10. W. Johannsen, Meddelilser fra Carlsberglaboratoriet, Copenhagen, 1884, vol. 2, p. 103.

12. M. Bosnes, E. Harris, L. Aigeltinger and O.-A. Olsen, Theor. Appl. Genet., 74 (1987) 177.

13. M. Bosnes, F. Weideman and O.-A. Olsen, Plant J., 2 (1992) 661.

14. R.C. Brown, B.E. Lemmon and O.-A. Olsen, Plant Cell, 6 (1994) 1241.

15. D.N. Doan, C. Linnestad and O.-A. Olsen, Plant Mol. Biol., 31 (1996) 877.

16. S.S. Klemsdal, A. Kvaale and O.-A. Olsen, Physiol. Plant., 67 (1986) 453.

17. S.S. Klemsdal, W. Hughes, A. Lonneborg, R.B. Aalen and O.-A. Olsen, Mol. Gen. Genet., 228 (1991) 9.

18. O.-A. Olsen and T. Krekling, Hereditas, 93 (1980) 147.

19. O.-A. Olsen, R.H. Potter and R. Kalla, Seed Sei. Res., 2 (1992) 117.

20. A. Kvaale and O.-A. Olsen, Ann. Bot., 57 (1986) 829.

21. F. Bidinger, R.B. Musgrave and R.A. Fischer, Nature, 270 (1977) 431.

22. G.D. Bonnett and L.D. Incoll, J. Exp. Bot., 44 (1993) 83.

23. R.E. Gaunt and A.C. Wright, Plant Pathol., 41 (1992) 688.

24. A.M. MacLeod and H. McCorquodale, New Phytol., 57 (1958) 168.

26. 26. C.J. Pollock and A.J. Cairns, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42 (1991) 77.

27. J. Tyynela, M. Stitt, A. Lonneborg, S. Smeekens and A.H. Schulman, Physiol. Plant., 93 (1995) 77.

28. J.D. Bewley and M. Black, Physiology and Biochemistry of Seeds, Springer-Verlag GMBH, Berlin, , 1978.

29. L.T. Evans and H.M. Rawson, Aust. J. Biol. Sci., 23 (1970) 245.

30. D.J. Carr and I.F. Wardlaw, Aust. J. Biol. Sci., 18 (1965) 711.

31. T. Gebbing and H. Schnyder, Plant Physiol., 121 (1999) 871.

32. M.D. Bennett, J.B. Smith and I. Barclay, Phil. Trans. R. Soc. Lond. B, 272 (1975) 199.

33. F.C. Felker, D.M. Peterson and O.E. Nelson, Plant Physiol., 74 (1984) 43.

34. M.-A. D'Aousta, S. Yellea and B. Nguyen-Quoc, Plant Cell, 11 (1999) 2407.

35. R. Zrenner, M. Salanoubat, L. Willmitzer and U. Sonnewald, Plant J., 7 (1995) 97.

36. P.S. Chourey, E.W. Taliercio, S.J. Carlson and Y.L. Ruan, Mol. Gen. Genet., 259 (1998) 88.

37. O. Martinez de Ilarduya, J. Vicente-Carbajosa, P. Sanchez de la Hoz and P. Carbonero, FEBS Lett., 320 (1993) 177.

38. A.J. Jarvi and R.F. Eslick, Crop Sci., 15 (1975) 363.

39. R.T. Ramage and L. Crandall, Barley Genet. Newsl., 11 (1981) 34.

40. L. Elling and M.R. Kula, J. Biotechnol., 34 (1994) 157.

41. K. Eimert, P. Villand, A. Kilian and L.A. Kleczkowski, Gene, 170

42. J. Preiss, Biotechnol. Annu. Rev., 2 (1996) 259.

43. L. Kleczkowski, P. Villand, A. Lonneborg, O.-A. Olsen and E. Liithi, Z. Naturforsch., 46c (1991) 605.

44. J. Preiss and T. Romeo, Prog. Nucleic Acid Res. Mol. Biol., 47 (1994) 299.

45. T.W. Greene and L.C. Hannah, Plant Cell, 10 (1998) 1295.

46. M.J. Giroux and L.C. Hannah, Mol. Gen. Genet., 242 (1994) 400.

47. K. Denyer, J. Foster and A.M. Smith, Planta, 197 (1995) 57.

48. G.W. Singletary, R. Banisadr and P.L. Keeling, Plant Physiol., 113

49. L.A. Kleczkowski, Trends Plant Sci., 1 (1996) 363.

50. J.C. Shannon, F.-M. Pien and K.-C.-. Liu, Plant Physiol., 110 (1996) 835.

51. J.C. Shannon, F.M. Pien, H. Cao and K.C. Liu, Plant Physiol., 117

52. K. Denyer, F. Dunlap, T. Thorbjornsen, P. Keeling and A.M. Smith, Plant Physiol., 112 (1996) 779.

53. T. Thorbjornsen, P. Villand, L.A. Kleczkowski and O.-A. Olsen, Biochem. J., 313 (1996) 133.

54. T. Thorbjornsen, P. Villand, K. Denyer, O.-A. Olsen and A.M. Smith,

55. Y. Kano, N. Kunitake, T. Karakawa, H. Taniguchi and M. Nakamura, Agric. Biol. Chem., 45 (1981) 1969.

56. A.M. Smith, Curr. Opin. Plant Biol., 2 (1999) 223.

57. J. Preiss and M.N. Sivak, Genet. Eng. (N Y), 20 (1998) 177.

58. J. Preiss, K. Ball, B. Smith-White, A. Iglesias, G. Kakefuda and L. Li, Biochem. Soc. Trans., 19 (1991) 539.

59. A.M. Smith, K. Denyer and C.R. Martin, Plant Physiol., 107 (1995) 673.

60. P.L. Vrinten and T. Nakamura, Plant Physiol., 122 (2000) 255.

61. Z.Y. Wang, F.Q. Zheng, G.Z. Shen, J.P. Gao, D.P. Snustad, M.G. Li, J.L. Zhang and M.M. Hong, Plant J., 7 (1995) 613.

62. Y.-J. Wang, P. White, L. Pollak and J. Jane, Cereal Chem., 70 (1993) 171.

63. T. Nakamura, M. Yamamori, H. Hirano, S. Hidaka and T. Nagamine, Mol. Gen. Genet., 248 (1995) 253.

64. W. Rhode, D. Becker and F. Salamini, Nucl. Acids Res., 16 (1988) 7185.

65. T. Taira, N. Fujita, K. Takaoka, M. Uematsu, A. Wadano, S. Kozaki and S. Okabe, Biochem. Genet., 33 (1995) 269.

66. A.W. MacGregor and G.B. Fincher, in A. W. MacGregor and R. S. Bhatty (eds.), Barley: Chemistry and Technology, American Association of Cereal Chemists, Inc., St. Paul, MN, 1993 p. 73.

68. S. Hizukuri and Y. Maehara, Carbohydr. Res., 206 (1990) 145.

69. S. Ball, H.-P. Guan, M. James, A. Myers, P. Keeling, G. Mouille, A. Buleon, P. Colonna and J. Preiss, Cell, 86 (1996) 349.

70. R.B. Frydman and C.E. Cardini, Biochem. Biophys. Res. Comm., 14 (1964) 353.

71. C. Pollock and J. Preiss, Arch. Biochem. Biophys., 204 (1980) 578.

72. A.H. Schulman and H. Ahokas, Physiol. Plant., 78 (1990) 583.

73. J. Tyynelä and A.H. Schulman, Physiol. Plant., 89 (1993) 835.

74. K. Denyer, C. Sidebottom, C.M. Hylton and A.M. Smith, Plant J., 4 (1993) 191.

75. J. Craig, J.R. Lloyd, K. Tomlinson, L. Barber, A. Edwards, T.L. Wang, C. Martin, C.L. Hedley and A.M. Smith, Plant Cell, 10 (1998) 413.

76. Z. Li, X. Chu, G. Mouille, L. Yan, B. Kosar-Hashemi, S. Hey, J. Napier, P. Shewry, B. Clarke, R. Appels, M.K. Morell and S. Rahman, Plant Physiol., 120 (1999) 1147.

77. A.H. Schulman, S. Tomooka, A. Suzuki, P. Myllärinen and S. Hizukuri, Carbohydr. Res., 275 (1995) 361.

78. T. Fontaine, C. D'Hulst, M.L. Maddelein, F. Routier, T.M. Pepin, A. Decq, J.M. Wieruszeski, B. Delrue, N. Van den Koornhuyse, J.-P. Bossu, B. Fournet and S. Ball, J. Biol. Chem., 268 (1993) 16223.

79. J.R. Lloyd, V. Landschutze and J. Kossmann, Biochem. J., 338 (1999) 515.

80. C. Martin and A.M. Smith, Plant Cell, 7 (1995) 971.

81. C. Sun, P. Sathish, B. Ek, A. Deiber and C. Jansson, Physiol. Plant., 96 (1996) 473.

82. C. Sun, P. Sathish, S. Ahlandsberg, A. Deiber and C. Jansson, New Phytol., 137 (1997).

83. C. Sun, P. Sathish, S. Ahlandsberg and C. Jansson, Plant Physiol., 118 (1998) 37.

84. K. Mizuno, T. Kawasaki, H. Shimada, H. Satoh, E. Kobayashi, S. Okumura, Y. Arai and T. Baba, J. Biol. Chem., 268 (1993) 19084.

85. A.-C. Salomonsson and B. Sundberg, Starch/Stärke, 46 (1994) 325.

86. M.G. James, D.S. Robertson and A.M. Myers, Plant Cell, 7 (1995) 417.

87. G. Mouille, M.L. Maddelein, N. Libessart, P. Talaga, A. Decq, B. Delrue and S. Ball, Plant Cell, 8 (1996) 1353.

88. C. Sun, P. Sathish, S. Ahlandsberg and C. Jansson, Plant Mol. Biol., 40 (1999) 431.

89. A.H. Schulman, R.F. Tester, H. Ahokas and W.R. Morrison, J. Cereal Sei., 19 (1994) 49.

90. A.M.L. McDonald, J.R. Stark, W.R. Morrison and R.P. Ellis, J. Cereal Sei., 13 (1991) 93.

91. A.W. MacGregor and D.L. Ballance, Cereal Chem., 57 (1980) 397.

92. P. Myllärinen, K. Autio, A.H. Schulman and K. Poutanen, J. Inst. Brew., 104 (1998) 343.

93. R.F. Tester, W.R. Morrison and A.H. Schulman, J. Cereal Sei., 17 (1993) 1.

94. P. Rodriguez-Palenzuela, J. Royo, L. Gömez, R. Sänchez-Monge, G. Salcedo, J.L. Molina-Cano, F. Garcia-Olmedo and P. Carbonero, Mol. Gen. Genet., 219 (1989) 474.

95. R.J. Simpson, H. Lambers and M.J. Dalling, Plant Physiol., 71 (1983) 7.

96. J. Kervinen, M. Kontturi and J. Mikola, Cereal Res. Comm., 18 (1990) 191.

97. C.M. Griffiths, S.E. Hosken, D. Oliver, J. Chojecki and H. Thomas, Plant Mol. Biol., 34 (1997) 815.

98. F.X. Xu and M.L. Chye, Plant J., 17 (1999) 321.

99. F. Chen and M.R. Foolad, Plant Mol. Biol., 35 (1997) 821.

100. C. Linnestad, D.N. Doan, R.C. Brown, B.E. Lemmon, D.J. Meyer, R. Jung and O.-A. Olsen, Plant Physiol., 118 (1998) 1169.

102. S. M0gelsvang and D.J. Simpson, Plant Mol. Biol., 36 (1998) 541.

103. P.R. Shewiy, in A. W. MacGregor and R. S. Bhatty (eds.), Barley: Chemistry and Technology, American Associaton of Cereal Chemists, Inc., St. Paul, Minnesota, USA, 1993 p. 131.

104. T. Yupsanis, S.R. Burgess, P.J. Jackson and P.R. Shewry, J. Exp. Bot., 41 (1990) 385.

106. J.M. Neuhaus and J.C. Rogers, Plant Mol. Biol., 38 (1998) 127.

107. F. García-Olmedo, G. salcedo, R. Sanchez-Monge, C. Hernandez-lucas, M.J. Carmona, J.J. Lopez-Fando, J.A. Fernandez, L. Gomez, J. Royo, F. Garcia-Maroto, A. Castagnaro and P. Carbonero, Trypsin/a-amylase inhibitors and thionins: Possible defence proteins from barley. P. R. Shewry, (ed., Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, The Alden Press, Ltd., Oxford, UK, , 1992.

108. M. Kreis and P.R. Shewry, in P. R. Shewry (ed.), Barley: Genetics, Biochemistry, Molecular Biology, and Biotechnology, C.A.B. International, Wallingford, UK, 1992 p. 319.

109. F. DelDagan, A. Rocher, V. Cameron-Mills and D. Wettstein, Proc. Natl. Acad. Sci. USA, 91 (1994) 8209.

110. M. Kreis, M. Williamson, B. Buxton, J. Pywell, J. Hejgaard and I. Svendsen, Eur. J. Biochem., 169 (1987) 517.

111. P. Runeberg-Roos, J. Kervinen, V. Kovaleva, N. Raikhel and S. Gal, Plant Physiol., 105 (1994) 321.

112. S. Marttila, B.L. Jones and A. Mikkonen, Physiol. Plant., 93 (1995) 317.

113. P.C. Bethke, S. Hillmer and R.L. Jones, Plant Physiol., 110 (1996) 521.

115. S.J. Swanson, P.C. Bethke and R.L. Jones, Plant Cell, 10 (1998) 685.

116. A. Brooks, C.F. Jenner and D. Aspinall, Aust. J. Plant Physiol., 9 (1982) 423.

117. R. Savin and M.E. Nicolas, Aust. J. Plant Physiol., 23 (1996) 201.

118. A.H.G.C. Rijven, Plant Physiol., 81 (1986) 448.

119. M.A.B. Wallwork, S.J. Logue, L.C. MacLeod and C.F. Jenner, Aust. J. Plant Physiol., 25 (1998) 173.

120. J.R. Lloyd, F. Springer, A. Buleon, B. Müller-Róber, L. Willmitzer and J. Kossmann, Planta, 209 (1999) 230.

121. A.J. Kortstee, A. Vermeesch, M., B.J. de Vries, E. Jacobsen and R.G. Visser, Plant J., 10 (1996) 83.

122. A.G. Kuipers, W.J. Soppe, E. Jacobsen and R.G. Visser, Plant Mol. Biol., 26 (1994) 1759.

123. M.J. Cho, J.H. Wong, C. Marx, W. Jiang, P.G. Lemaux and B.B. Buchanan, Proc. Natl. Acad. Sci. USA, 96 (1999) 14641.

124. Y. Wan and P.G. Lemaux, Plant Physiol., 104 (1994) 37.

125. A. Ritala, K. Aspegren, U. Kurtén, M. Sakmenkallio-Marttila, L. Mannonen, R. Hannus, V. Kauppinen, T.H. Teeri and T.-M. Enari, Plant Mol. Biol., 24 (1994) 317.

This Page Intentionally Left Blank

Carbohydrate Reserves in Plants - Synthesis and Regulation Ä.K. Gupta andN. Kaur (Editors) © 2000 Elsevier Science B. V. All rights reserved.

Tuber filling and starch synthesis in potato

R. Viola

Unit of Biochemistry, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom

The potato, as the fourth most important world food crop, continues to stimulate research activity in commercial and academic sectors alike. Important objectives of this research are the factors regulating assimilate allocation to storage organs (sink-source relationships) and the mechanisms controlling assimilate conversions into storage products in the tubers. Of the tuber storage products, starch is of primary importance, accounting for up to 70% of tuber dry matter. It is the most important source of calories in the animal and human diet and provides a starter material for the preparation of more than 500 different commercial products. This chapter aims to update our understanding on tuber formation and on the most important metabolic processes occurring during tuber development. Particular emphasis has been given to the import and metabolism of sucrose, its conversion into starch and starch granule assembly. Substantial progress in these areas has been made in the past few years thanks to recombinant gene technology, and this will be reviewed here. For a more detailed description of the advances in potato transgenic biology, which is beyond the scope of this chapter, the readers are referred to other parts of this publication or to recent reviews (1,2).

0 0

Post a comment