Info

82. H.C. Srivastava, P.P. Singh and P.V. Subba Rao, Carbohydr. Res, 6 (1968) 361.

83. N.M. Mestechkina, O.V. Anulov and V.D. Shcherbukhin, Appl. Biochem. Microbiol, 34

84. E. Heyne and R.L. Whistler, J. Am. Chem. Soc, 70 (1948) 2249.

85. H.L. Tookey, V.F. Pfeifer and C.R. Martin, Agr. Food Chem, 11 (1963) 317.

86. A.K. Sen andN. Banerji, Carbohydr. Res, 157 (1986) 251.

87. N.I. Smirnova and V.D. Shcherbukhin, Prikl. Biokhim. Mikrobiol, 25 (1989) 226.

88. M.P. Sinha and R.D. Tiwari, Phytochemistry, 9 (1970) 1881.

89. R.L. Whistler and J. Saamio, J. Am. Chem. Soc, 79 (1957) 6055.

90. G.O. Aspinall and J.N.C. Whyte, J. Am. Chem. Soc, 86 (1964) 5058.

91. N. Alam and P.C. Gupta, Carbohydr. Res, 153 (1986) 334.

92. N.M. Mestechkina, K. Dovletmuradov and V.D. Shcherbukhin, Prikl. Biokhim.

Mikrobiol, 29 (1993) 170.

93. O.V. Anulov, N.I. Smirnova, N.M. Mestechkina, I.A. Shreter and V.D. Shcherbukhin,

Appl. Biochem. Microbiol, 31 (1995) 550.

94. N.I. Smirnova, I.E. Lobanova and O.V. Anulov, Rast. Resursy, 34 (1998) 68.

95. N.M. Mestechkina and V.D. Scherbukhin, Prikl. Biokhim. Mikrobiol, 26 (1990) 799.

96. N.M. Mestechkima, K. Dovletmuradov and V.D. Shcherbukhin, Prikl. Biokhim. Mikrobiol, 27(1991)435.

99. N.M. Mestechkina and V.D. Shcherbukhin, Prikl. Biokhim. Mikrobiol, 26 (1990) 55.

100. J.E. Courtois, C. Anagnostopoulos and F. Petek, Bull. Soc. Chim. Biol, 40 (1958) 1277.

101. P. Andrews, L. Hough and J.K.N. Jones, J. Am. Chem. Soc, 74 (1952) 4029.

102. J.S.G. Reid and H. Meier, Pflanzenphysiol, 62 (1970) 89.

103. A.K. Gupta and S. Bose, Carbohydr. Res, 153 (1986) 69.

104. A.K. Gupta and H. Grasdalen, Carbohydr. Res, 173 (1988) 159.

105. N.M. Mestechkina, O.V. Anulov, N.I. Smirnova and V.D. Shcherbukhin, Prikl. Biokhim.

Mikrobiol, 32(1996) 656.

106. F.K. Horvei and A. Wickström, Acta Chem. Scand, 18 (1964) 833.

109. J.H. McClendon, W.G. Nolan and H.F. Wenzler, Am. J. Bot, 63 (1976) 790.

110. J.S.G. Reid and H. Meier, Phytochemistry, 9 (1970) 513.

111. P.M. Dey, Adv. Carb. Chem. Biochem, 35 (1978) 341.

112.1. Mallett, B.V. McCleary and N.K. Matheson, Phytochemistry, 26 (1987) 1889.

113. H. Meier and J.S.G. Reid, Planta, 133 (1977) 243.

114. A. Sioufi, F. Percheron and J.E. Courtois, Phytochemistry, 9 (1970) 991.

115. J.M. Campbell and J.S.G. Reid, Planta, 155 (1982) 105.

116. M. Edwards, P.V. Bulpin, I.C.M. Dea and J.S.G. Reid, Planta, 178 (1989) 41.

117. M. Edwards, C. Scott, M.J. Gidley and J.S.G. Reid, Planta, 187 (1992) 67.

118. J.L.M.S. Ganter, S.F. Zawadzkibaggio, S.C.S. Leiter, M.R. Sierakowski and F. Reicher, J. Carbohydr. Chem, 12 (1993) 753.

119. J.S.G. Reid and H. Meier, Planta, 106 (1972) 44.

120. B.V. McCleary and N.K. Matheson, Phytochemistry, 15 (1976) 43.

121. M.S. Buckeridge, V.R. Panegassi and S.M.C. Dietrich, Rev. Brasil. Bot, 18 (1995) 171.

122. M.S. Buckeridge and S.M.C. Dietrich, Plant Sei, 117 (1996) 33.

123. L.M.A. Dirk, A.R. Van der Krol, D. Vreugdenhil, H.W.M. Hilhorst and J.D. Bewley, Plant Physiol. Biochem, 37 (1999) 41.

124. B.V. McCleary, Phytochemistry, 22 (1983) 649.

125. B.V. McCleary and N.K. Matheson, Phytochemistry, 13 (1974) 1747.

126. N. Overbeeke, A.J. Fellinger, M.Y. Toonen, D. Van Wassnaar and C.T. Verris, Plant Mol. Biol, 13 (1989) 541.

128. J.S.G. Reid and H. Meier, Planta, 112 (1973) 301.

130. C.G. Spyropoulos and J.S.G. Reid, Planta, 166 (1985) 271.

131. C.G. Spyropoulos and J.S.G. Reid, Planta, 174 (1988) 473.

132. F. Kontos and C.G. Spyropoulus, J. Plant Physiol, 149 (1996) 629.

133. J.D. Bewley, D.W.M. Leung, S. Maclsaac, J.S.G. Reid and N. Xu, Plant. Physiol. Biochem, 31 (1993) 483.

134. D.W.M. Leung, J.D. Bewley and J.S.G. Reid, Planta, 153 (1981) 95.

135. R.S. Cowan in Advances in legume systematics, R.M. Polhill and P.H. Raven (eds.) Royal Botanic Gardens, Kew, Richmond, 1981.

136. R.M. Polhill, P.H. Raven and C.H. Stirton in Advances in legume systematics, R.M. Polhill and P.H. Raven (eds.) Royal Botanic Gardens, Kew, Richmond, 1981.

137. G.L. Stebbins in Origin and early evolution of angiosperms, C.B. Beck (editor), Columbia University Press, New York, 1974.

138. J.S.G. Reid and J.D. Bewley, Planta, 147 (1979) 145.

139. S.J. Gould and R.C. Lewontin, Proc. R. Soc. Lond, B205 (1979) 581.

140. J.J. Cerda, F.L. Robbins, C.W. Bürgin and G.A. Gerencser, J. Parenter. Enteral. Nutr, 11 (1987) 63.

141.1. Torsdottir, M. Alpsten, H. Anderson and S. Einarsson, J. Nutr., 119 (1989) 1925.

142. P.V. Bulpin, M.J. Gidley, R. Jeffcoat and D.R. Underwood, Carbohydr. Res., 12 (1990) 155.

143. M.S. Buckeridge, S.M.C. Dietrich and A.M. Maluf, Rev.Bras.Bot, 10 (1987) 25.

Carbohydrate Reserves in Plants - Synthesis and Regulation A.K. Gupta and N. Kaur (Editors) © 2000 Elsevier Science B. V. All rights reserved.

Carbohydrates in trees

Physiological Ecology of Plants, University of Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, FRG

Nonstructural carbohydrates are important back bones of life strategies of long-living trees. In conifers and broadleaf trees, sucrose, glucose, and fructose constitute the dominating soluble, starch the pivotal non-soluble storage carbohydrates. Sucrose is the preferred transport sugar. In addition, species-specific sugar alcohols can be found. Like in herbaceous plants, photoassimilates are allocated from green (source) tissues to non-green (sink) areas. In addition, leaves of evergreen trees do not only deliver carbohydrates but can also serve as storage organs. Woody axes (branches and the trunk) are not only involved in long distance transport (bark) of carbon. The living wood tissues (sapwood) and the bark are also the major storage compartments of carbon. During heartwood formation, carbohydrates sustain the formation of phenolic extractives, components which ascribe for the natural durability of wood. As roots of most trees are part of plant microbe interactions (mycorrhiza), their carbohydrate status and the role of sugars in this interaction is also of importance. Allocation and partitioning of carbohydrates between and within the individual organs of a tree depend on ontogenetic (eg stage of organ maturation) and environmental (eg mineral nutrition, toxic gases, climate, pathogenic and symbiotic interactions) impacts.

Was this article helpful?

0 0

Post a comment