Info

57. N. Wang and P. Nobel, Plant Physiol, 116 (1998) 709.

58. K. Oparka and R. Turgeon, The Plant Cell, 11 (1999) 739.

59. H. Winter, D. Robinson and H. Hedlt, Planta, 191 (1993) 180.

60. Marty, F, Plant Vacuoles. The Plant Cell, 11 (1999) 587.

61. E. Herman and B. Larkins, The Plant Cell, 11 (1999) 601.

62. D. Demason, in Cellular and Molecular Biology of Plant Seed Development, Larkins B. and I. Vasil, (eds.), Kluwer Academic Publishers, The Netherlands, 1997.

64. P. Chourey, Y-C. Chen and M. Miller, Maydica, 36 (1991) 141.

65. T. Young, D. Gallie and D. DeMason, Plant Physol, 115 (1997) 737.

66. C. Boyer and J. Shannon, Plant Breed. Rev, 1 (1983) 139.

67. T. Young and D. Gallie, Plant Mol. Biol, 39 (1999) 915.

68. J-C. Jang and J. Sheen, Trends in Plant Sei, 2 (1997) 208.

69. S. Smeekens and F. Rook, Plant Physiol, 115 (1997) 7.

70. K. Koch, Annu. Rev. Plant Physiol. Mol. Biol, 47 (1996) 509.

71. R. Pressey, Arch. Biochem. Biophys, 113 (1966) 667.

72. K. Matsushita and I. Uritani, J. Biochem (Tokyo), 79 (1976) 633.

73. S. Greiner, S. Krausgrill and T. Rausch, Plant Physiol, 116 (1998) 733.

74. R. Jefferson, A. Goldsbrough and M. Bevan, Plant Mol. Biol, 14 (1990) 995.

75. H. Wenzler, G. Mignery, L. Fisher and W. Park, Plant Mol. Biol, 12 (1989) 41.

76. F. Rook, N. Gerrits, A. Kortstee, M. van Kampen, M. Borrias, P. Weisbeek and S. Smeekens, Plant J, 15 (1998) 253.

78. N. Haiford, P. Purcell and D. Hardie, Trends in Plant Sei, 4 (1999) 117.

79. A. Galina, M. Reis, M. Albuqerque, A. Puyou, M. Puyou and L. de Meis, Biochem. J, 309(1995) 105.

81. G. Beutner, A. Ruck and D. Brdiczka, Trans. Biochem. Soc, 25 (1997)151.

82. N. Zamzami, T. Hirsch, B. Dallaporta, P. Petit and G. Kroemer, J. Bioeng. Biomem. 29(1997) 185.

83. M. Rober, K. Geider, B. Muller-Rober and L.Willmitzer, Planta, 199 (1996) 528.

84. U. Sonnewald, M. Hajirezaei, J. Kossmann, A. Heyer, R. Trethewey and L. Willmitzer, Nature Biotech, 15 (1997) 794.

85. R. Trethewey, P. Geigenberger, M-R. Hajirezaei, U. Sonnewald, M. Stitt, M, J. Riesmeier and L. Willmitzer, Plant J, 15 (1998) 109.

86. R. Trethewey, P. Geigenberger, A. Hennig, H. Fleischer-Notter, B. Muller-Rober and L. Willmitzer, Plant Cell Env, 22 (1999) 71.

Carbohydrate Reserves in Plants - Synthesis and Regulation A.K. Gupta and N. Kaur (Editors) © 2000 Elsevier Science B. V. All rights reserved.

Enzymology of fructan polymerization and depolymerization in grasses

C.A. Henson

U.S.D.A.- Agricultural Research Service, Cereal Crops Research Unit and Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706

The enzymology of fructan metabolism has received much attention since the pioneering work of Edelman and Jefford in 1968. Significant progress in identifying the various enzymes possibly involved in fructan metabolism has been made easier by advancements in technology, ranging from improved protein and carbohydrate chromatography systems to more user friendly cloning and expression systems. This review focuses on studies that used rigorously purified enzymes and well defined substrates. Coincidently, most of this work was conducted with grass species that store the highly branched graminan type of fructan which contain both ß-2,6 and ß-2,l-fructosyl linkages.

Was this article helpful?

0 0

Post a comment