99. J.J. Valdez-Alareon, M. Ferrando, G. Salerno, B. Jimenez-Moraila and L.

Herrera-Estrella, Gene, 170 (1996) 217.

100. B. Suhiharto, H. Sakakibara and S.T. Sugiyama, Plant Cell Physiol., 38 (1997) 961.

101. A. Komatsu, Y. Takanokura, M. Omura and T. Akihama, Mol. Gen. Genet., 252 (1996) 346.

102. U. Heim, H. Weber and U. Wobus, Gene, 178 (1996) 201.

103. S.C. Huber and J.L. Huber, Biochim. Biophys. Acta., 1092 (1990) 393.

104. R.W. McMichael Jr, R.R. Klein, M.E. Salvueei and S.C. Huber, Arch. Biochem. Biophys. 307 (1993) 248.

105. H. Weiner and M. Stitt, FEBS Lett., 333 (1993) 159.

106. P. Quick, G. Siegl, H.E. Neuhaus, R. Feil and M. Stitt, Planta, 177 (1989) 536.

107. J.S. Hawker and G.M Smith, Phytochemistry, 23 (1984) 245.

109. T. apRees, J.H. Green and P.M. Wilson, Biochem. J., 227 (1985) 299.

110. M. Stitt, G. Mieskes, H.D. Soling and H.W. Heidt, FEBS Lett., 154 (1982) 214.

111. N.J. Kruger and D.T. Dennis, Arch. Biochem. Biophys., 256 (1987) 273.

113. C. Cseke, N.F. Weenden, B.B. Buchanan and K. Uyeda, Proc. Nat. Acad. Sei. USA, 79 (1982) 4322.

114. E. Van Schaftingen, E. Lederer, R. Rations and H.G. Hers, Eur. J. Biochem., 129 (1983) 191.

115.R.T. Giaquinta, Annu. Rev. Plant Physiol., 34 (1983) 347.

116. S. Delrot, Plant Physiol. Biochem., 24 (1987) 667.

117. A.J.E. Van Bel, Plant Physiol. Biochem., 25 (1988) 677.

118. W.J. Lucas and M.A. Madore, The Biochemistry of Plants: A Comprehensive Treatise, J. Preiss (ed.), vol. 14, Academic Press, New York, (1988) 35.

119. S. Delrot, Transport of Photoassimilates, D.A. Baker and J.L. Hall (eds.), Longman, Essex, England, (1989) 167.

120. A.W. Robards and W.J. Lucas, Annu. Rev. Plant Physiol. Plant Mol. Biol., 41 (1990) 369.

121. D.U. Beebe and R. Turgeon, Physiol. Plant., 83 (1991)194.

122. A.J.E. Van Bel, Annu. Rev. Plant Physiol. Plant Mol. Biol., 44 (1993) 253.

123. D.R. Bush, Annu. Rev. Plant Physiol. Plant Mol. Biol., 44 (1993) 513.

124. M.A. Grusak, D.U. Beebe and R. Turgeon, Photoassimilate

Distribution in Plants and Crops: Source-Sink Relationships, E. Zamski and A.A. Schaffer (eds.), Marcel Dekker Inc., New York, (1996) 209.

125. T.J Buckhout and A. Tubbe, Photoassimilate Distribution in Plants and Crops: Source-Sink Relationships, E. Zamski and A.A. Schaffer (eds.), Marcel Dekker Inc., New York, (1996) 229.

126. M.R. Thorpe and P.E.H. Minclin, Photoassimilate Distribution in Plants and Crops: Source-Sink Relationships, E. Zamski and A.A. Schaffer (eds.), Marcel Dekker Inc., New York, (1996) 261.

127. A. vonSchaewen, M. Stitt, R. Schmidt, U. Sonnewald and L.

128. U. Sonnewald, M. Brauer, A. vonSchaewen, M. Stitt and L.

129. D. Heineke, U. Sonnewald, D. Bussis, G. Gunter, K. Leidreiter, I. Wilke, K. Raschke, L. Willmitzer and H.W. Heidt, Plant Physiol., 100 (1992) 301.

130. S. Dikinson, T. Altabella and M. Chrispeels, Plant Physiol., 95 (1991) 420.

131. L.J. Sweetlove, J. Kossmann, J.W. Riesmeier, R.N. Trethewey and S.A. Hill, Plant J., 15 (1998) 697.

132. W.B. Frommer and U. Sonnewald, J. Exp. Bot., 46 (1995) 587.

133. S. Wolf and W.J. Lucas, Plant Cell Environ., 17 (1994) 573.

134. A. Schulz, C. Kuhn, J.W. Riesmeier and W.B. Frommer, Planta, 206 (1998) 533.

135. J.W Riesmeier, L. Willmitzer and W.B. Frommer, EMBO J., 11 (1992) 4705.

136. J.W Riesmeier, L. Willmitzer and W.B. Frommer, EMBO J., 13 (1994) 1.

137. P.J.F. Henderson, J. Bioenergetics Biomembranes, 22 (1990) 525.

138. W.J. Frommer, S. Hummel, R. Lemoine and S. Delrot, Plant Physiol. Biochem., 32 (1994) 205.

139. A. Parets-Soler, J.M. Pardo and R. Serrano, Plant Physiol., 93 (1990) 1654.

140.T. Martin, W.B. Frommer, M. Salunoubat and L. Willmitzer, Plant J., 4

141. K.D. Nolte and K.E. Koch, Plant Physiol., 101 (1993) 899.

142. S. Anand and R. Singh, J. Plant Sci., 2 (1986) 1.

143. V. Kumar, V.I.P. Batra and R. Singh, J. Plant Biochem. Biotech., 4 (1995) 97.

144. N. Sauer and R. Stadler, Plant J., 4 (1993) 601.

145. N. Sauer, K. Friedlander and U. Graml-Wieke, EMBO J., 9 (1990) 3045.

146. U. Sonnewald, J. Lerchl, R. Zrenner and W.B. Frommer, Plant Cell Environ., 17 (1994) 649.

147. R. Zrenner, M. Salanoubat, L. Willmitzer and U. Sonnewald, Plant J., 7

148. G.Q. Tang, M. Luscher and A. Sturm, Plant Cell, 11 (1999) 177.

149. U. Sonnewald, A Molecular Approach to Primary metabolism in Higher Plants, C.H. Fiyer and W.P. Quick (eds.), Taylor & Francis, London, (1997) 63.

150. R.N. trethewey, P. Geigenberger, K. Riedel, M.R. Hajirezaei, U. Sonnewald, M. Stitt, J.W. Riesmeier, L. Willmitzer, Plant J., 15 (1998) 109.

151. R.N. Trethewey, J.W. Riesmeier, L. Willmitzer, M. Stitt and P. Geigenberger, Planta, 208 (1999) 227.

Carbohydrate Reserves in Plants - Synthesis and Regulation

€> 2000 Elsevier Science B. V. All rights reserved.

The physiology of sucrose storage in sugarcane

Ewald Komor

Pflanzenphysiologie, Universität Bayreuth, D-95440 Bayreuth, Germany ewald. [email protected] bayr euth. de

This short review concentrates on the transport and metabolism of sucrose and hexoses in the storage parenchyma of the sugarcane stalk. Unloading of sucrose from the phloem in the stalk has to proceed symplastically, because barriers around the bundle sheath of ripening stalks prevent apoplastic solute flow. Consequently, unloaded sucrose first appears in the cytosol of storage parenchyma. Sucrose then is subject to several cyclic processes in parallel: a metabolic cycle of sucrose hydrolysis and synthesis, a cycle of sucrose efflux and hexose uptake through plasmalemma-located transport systems, and a cycle of sucrose and hexose transfer into and out of the vacuole. The rate of these cyclic processes changes during the ripening of the internodes. In stalk parenchyma, where the transport rate through the tonoplast seems relatively low, intravacuolar acid invertase exerts the major control over the sucrose content of the cell. In case of rapid sucrose transfer over the tonoplast, as it happens in suspension cells, that control is lifted.

Was this article helpful?

0 0

Post a comment