Career at Cold Spring Harbor

In 1936 McClintock, at Stadler's urging, accepted a genetics research and teaching position at the University of Missouri, which she held for five years, until she seized an opportunity to be a visiting professor at Columbia University and a visiting investigator in the genetics department of the Carnegie Institution of Washington (CIW), working at Cold Spring Harbor on Long Island in New York. She was offered a permanent job at Cold Spring Harbor in 1943 and spent the rest of her life working there with brief visiting professor appointments at Stanford University, Caltech, and Cornell.

In the winter of 1944 McClintock was invited by a former Cornell colleague, George Beadle, to go to Stanford to study the chromosomes of the pink bread mold Neurospora. Within ten weeks she was able to describe the fungal chromosomes and demonstrate their movement during cell division. This work was important to an understanding of the life history of the organism, and the fungus would be employed by Beadle and his colleagues to illucidate how genes control cell metablolism. In 1958 Beadle shared a Nobel Prize for that work.

Returning to Cold Spring Harbor in 1945, McClintock traced genes through the changes in colored kernels of corn. In that same year she was elected president of the Genetics Society of America. Over the next few years, using genetic and cytological experiments in the corn plant (Zea mays), she concluded that genetic elements (transposable elements, or transposons) can move from place to place in the genome and may control expression of other genes (hence called controlling elements). She published her findings in the 1950s, and more than thirty years later, in 1983, she was honored with the Nobel Prize for her remarkable discovery.

Many have wondered why it took so long for McClintock's work in transposition to be recognized by the leaders in the scientific community. One reason could be that although she studied corn chromosomes employing cytogenetic techniques, other researchers studied simpler organisms (bacteria and their viruses) and used molecular techniques. McClintock's experiments were complex and laborious, taking months or even years to yield results. Molecular studies in simpler organisms gave almost immediate answers, thus providing their researchers with instant celebrity. Additionally, McClintock's findings contradicted the prevailing view that all genes were permanently in a linear sequence on chromosomes.

Further, although McClintock's conclusion that genes could move from place to place in the corn genome was accepted, the idea was considered peculiar to corn, probably not universally relevant to all organisms. It was not until the 1970s when transposons were found in a number of other organisms, first in bacteria and then in most organisms studied by geneticists, that the value of McClintock's initial studies realized. Research on transposable elements, or transposons, led to the revolution in modern recombinant deoxyribonucleic acid (DNA) technology that has played a significant role in medicine and agriculture. When McClintock's work was rediscovered, she was recognized and rewarded with the Nobel Prize for her great insights. McClintock died on September 2, 1992, in Huntington on Long Island, New York. see also Chromosomes; Genetic Mechanisms and Development; Polyploidy.

Lee B. Kass

Was this article helpful?

0 0
Growing Soilless

Growing Soilless

This is an easy-to-follow, step-by-step guide to growing organic, healthy vegetable, herbs and house plants without soil. Clearly illustrated with black and white line drawings, the book covers every aspect of home hydroponic gardening.

Get My Free Ebook

Post a comment