References

1. J.J. Falke, R.B. Bass, S.L. Butler, S.A. Chervitz, M.A. Danielson (1997). The two-component signaling pathway of bacterial chemotaxis - a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. of Cell & Develop. Biol., 13, 457-512.

2. M.C. Pirrung (1999). Histidine kinases and two-component signal transduction systems. Chem. & Biol., 6, R167-R175.

3. W.F. Loomis, A. Kuspa, G. Shaulsky (1998). Two-component signal transduction systems in eukaryotic microorganisms. Curr. Opin. Microbiol., 1, 643 648.

4. J.B. Stock, M.G. Surette, M. Levit, P. Park (1995). Two-component signal transduction systems: Structure-function relationships and mechanisms of catalysis. In: J.A. Hoch, T.J. Silhavy (Eds), Two-Component Signal Transduction (pp. 2551). American Society for Microbiology, Washington, DC.

5. Y.L. Robinson, D.R. Buckler, A.M. Stock (2000). A tale of two components: a novel kinase and a regulatory switch. Nat. Struct. Biol., 7, 626-633.

6. S. Aizawa, C.S. Harwood, R.J. Kadner (2000). Signaling components in bacterial locomotion and sensory reception. J. Bacteriol., 182, 1459-1471.

7. D. Oesterhelt, W. Stoeckenius (1971). Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature - New Biol., 233, 149-152.

8. J.K. Lanyi (2000). Molecular mechanism of ion transport in bacteriorhodopsin: Insights from crystallographic, spectroscopic, kinetic, and mutational studies. J. Phys. Chem. B, 104, 11441-11448.

9. H. Luecke, B. Schobert, H.T. Richter, J.P. Cartailler, J.K. Lanyi (1999). Structure of bacteriorhodopsin at 1.55 Angstrom resolution. J. Mol. Biol., 291, 899-911.

10. E. Pebay-Peyroula, G. Rummel, J.P. Rosenbusch, E.M. Landau (1997). X-ray structure of bacteriorhodopsin at 2.5 Angstroms from microcrystals grown in lipidic cubic phases. Science, 277, 1676-1681.

11. K. Edman, P. Nollert, A. Royant, H. Belrhali, E. Pebay-Peyroula, J. Hajdu, R. Neutze, E.M. Landau (1999). High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature, 401, 822-826.

12. H. Luecke (2000). Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Biochem. Biophys. Acta, 1460, 133-156.

13. H.J. Sass, G. Biildt, R. Gessenich, D. Hehn, D. Neff, R. Schlesinger, J. Berendzen, P. Ormos (2000). Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature, 406, 649-653.

14. J.K. Lanyi (2000). Crystallographic studies of the conformational changes that drive directional transmembrane ion movement in bacteriorhodopsin. Biochem. Biophys. Acta, 1459, 339-345.

15. D. Oesterhelt (1995). Structure and function of halorhodopsin. Isr. J. Chem., 35, 475-494.

16. J.K. Lanyi, G. Varo (1995). The photocycles of bacteriorhodopsin. Isr. J. Chem., 35, 365-385.

17. A. Matsuno-Yagi, Y. Mukohata (1980). ATP synthesis linked to light-dependent proton uptake in a rad mutant strain of Halobacterium lacking bacteriorhodopsin. Arch. Biochem. Biophys., 199, 297-303.

18. B. Schobert, J.K. Lanyi (1982). Halorhodopsin is a light-driven chloride pump. J. Biol. Chem., 257, 10306-10313.

19. A. Blanck, D. Oesterhelt (1987). The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EM BO J., 6, 265-273.

20. M. Kolbe, H. Besir, L.O. Essen, D. Oesterhelt (2000). Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science, 288, 1390-1396.

21. J.L. Spudich (1998). Variations on a molecular switch - transport and sensory signalling by archaeal rhodopsins. Mol. Microbiol., 28, 1051-1058.

22. E. Hildebrand, N. Dencher (1975). Two photosystems controlling behavioural responses of Halobacterium halobium. Nature, 257, 46^48.

23. N. Dencher (1978). Light-induced behavioral reactions of Halobacterium halobium: Evidence for two rhodopsins acting as photopigments. In: Energetics and Structure of Halophilic Microorganisms (pp. 67-88) Elsevier/North Holland Biomedical Press.

24. N.A. Dencher, E. Hildebrand (1979). Sensory transduction in Halobacterium halobium: retinal protein pigment controls UV-induced behavioral response. Z. Naturforsch.,Teil C, 34, 841-847.

25. J.L. Spudich, W. Stoeckenius (1979). Photosensory and chemosensory behaviour of Halobacterium halobium. Photobiochem. Photobiophys., 1, 43-53.

26. W. Sperling, A. Schimz (1980). Photosensory retinal pigments in Halobacterium halobium. Biophys. Struct. Mechanism, 6, 165-169.

27. J.L. Spudich, W. Stoeckenius (1980). Protein modification reactions in Halobacterium photosensing. Fed. Proc. FASEB, 39, 1972.

28. A. Schimz (1981). Methylation of membrane proteins is involved in chemosensory and photosensory behavior of Halobacterium halobium. FEBS Lett., 125, 205 207.

29. A. Schimz (1982). Localization of the methylation system involved in sensory behaviour of Halobacterium halobium and its dependence on calcium. FEBS Lett., 139, 283-286.

30. E.N. Spudich, J.L. Spudich (1982). Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy-transduction mutants of Halobacterium halobium. Proc. Natl. Acad. Sci. U.S.A., 79, 4308^4-312.

31. R.A. Bogomolni, J.L. Spudich (1982). Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc. Natl. Acad. Sci. U.S.A., 79, 6250-6254.

32. J.L. Spudich, R.A. Bogomolni (1983). Spectroscopic discrimination of the three rhodopsin-like pigments in Halobacterium halobium membranes. Biophys. J., 43, 243-246.

33. J.L. Spudich, R.A. Bogomolni (1984). Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature, 312, 509-513.

34. H. Tomioka, T. Takahashi, N. Kamo, Y. Kobatake (1986). Flash spectroscopic indentification of a fourth rhodopsin-like pigment in Halobacterium halobium. Biochem. Biophys. Res. Commun., 139, 389-395.

35. E.K. Wolff, R.A. Bogomolni, P. Scherrer, B. Hess, W. Stoeckenius (1986). Color discrimination in halobacteria: Spectroscopic characterization of a second sensory receptor covering the blue-green region of the spectrum. Proc. Natl. Acad. Sci. U.S.A., 83, 7272-7276.

36. A. Blanck, D. Oesterhelt, E. Ferrando, E.S. Schegk, F. Lottspeich (1989). Primary structure of sensory rhodopsin I, a prokaryotic photoreceptor. EMBO J., 8, 3963-3971.

37. W.S. Zhang, A. Brooun, M.M. Mueller, M. Alam (1996). The primary structures of the archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Proc. Natl. Acad. Sci. U.S.A., 93, 8230-8235.

38. R. Seidel, B. Scharf, M. Gautel, K. Kleine, D. Oesterhelt, M. Engelhard (1995). The primary structure of sensory rhodopsin II: A member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. Proc. Natl. Acad. Sci. U.S.A., 92, 3036-3040.

39. G. Schmies, B. Liittenberg, I. Chizhov, M. Engelhard, A. Becker, E. Bamberg (2000). Sensory rhodopsin II from the haloalkaliphilic Natronobacterium pharaonis: Light-activated proton transfer reactions. Biophys. J., 78, 967-976.

40. M. Iwamoto, K. Shimono, M. Sumi, N. Kamo (1999). Positioning proton-donating residues to the Schiff-base accelerates the M-decay of pharaonis phoborhodopsin expressed in Escherichia coli. Biophys. Chem., 79, 187-192.

41. V.J. Yao, J.L. Spudich (1992). Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Proc. Natl. Acad. Sci. U.S.A., 89, 11915-11919.

42. M. Alam, D. Oesterhelt (1984). Morphology, function and isolation of halobacterial flagella. J. Mol. Biol., 176, 459^75.

43. M. Alam, M. Lebert, D. Oesterhelt, G.L. Hazelbauer (1989). Methyl-accepting taxis proteins in Halobacterium halobium. EMBO J., 8, 631-639.

44. K.F. Storch, J. Rudolph, D. Oesterhelt (1999). Car: a cytoplasmic sensor responsible for arginine Chemotaxis in the archaeon Halobacterium salinarum. EMBO J., 18, 1146-1158.

45. W.V. Ng, S.P. Kennedy, G.G. Mahairas, B. Berquist, M. Pan, H.D. Shukla, S.R. Lasky, N.S. Baliga, V. Thorsson, J. Sbrogna, S. Swartzell, D. Weir, J. Hall, T.A. Dahl, R. Welti, Y.A. Goo, B. Leithauser, K. Keller, R. Cruz, M.J. Danson, D.W. Hough, D.G. Maddocks, P.E. Jablonski, M.P. Krebs, C.M. Angevine, S. DasSarma (2000). Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sei. U.S.A., 97, 12176-12181.

46. J. Rudolph, B. Nordmann, K.F. Storch, H. Gruenberg, K. Rodewald, D. Oesterhelt (1996). A family of halobacterial transducer proteins. FEMS Microbiol. Lett., 139, 161-168.

47. W.S. Zhang, A. Brooun, J. McCandless, P. Banda, M. Alam (1996). Signal transduction in the Archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins. Proc. Natl. Acad. Sei. U.S.A., 93, 4649^1654.

48. A. Brooun, J. Bell, T. Freitas, R.W. Larsen, M. Alam (1998). An archaeal aerotaxis transducer combines subunit I core structures of eukaryotic cytochrome c oxidase and eubacterial methyl-accepting Chemotaxis proteins. J. Bacteriol., 180, 1642-1646.

49. A. Brooun, W.S. Zhang, M. Alam (1997). Primary structure and functional analysis of the soluble transducer protein htrxi in the archaeon Halobacterium salinarium. J. Bacteriol., 179, 2963-2968.

50. M.V. Kokoeva, D. Oesterhelt (2000). BasT, a membrane-bound transducer protein for amino acid detection in Halobacterium salinarum. Mol. Microbiol., 35, 647-656.

51. S.B. Hou, R.W. Larsen, D. Boudko, C.W. Riley, E. Karatan, M. Zimmer, G.W. Ordal, M. Alam (2000). Myoglobin-like aerotaxis transducers in archaea and bacteria. Nature, 403, 540-544.

52. S.B. Hou, A. Brooun, H.S. Yu, T. Freitas, M. Alam (1998). Sensory rhodopsin II transducer Htrll is also responsible for serine Chemotaxis in the archaeon Halobacterium salinarium. J. Bacteriol, 180, 1600-1602.

53. J. Rudolph, D. Oesterhelt (1996). Deletion analysis of the che operon in the archaeon Halobacterium salinarium. J. Mol. Biol., 258, 548-554.

54. J. Rudolph, D. Oesterhelt (1995). Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarium. EMBO J., 14, 667 673.

55. E. Hildebrand, A. Schimz (1986). Integration of photosensory signals in Halobacterium halobium. J. Bacterioleriol., 167, 305-311.

56. J. Stock, M. Levit (2000). Signal transduction: hair brains in bacterial Chemotaxis. Curr. Biol., 10, R11-R14.

57. A.M. Stock, V.L. Robinson, P.N. Goudreau (2000). Two-component signal transduction. Annu. Rev. Biochem., 69, 183-215.

58. M. Montrone, W. Marwan, H. Grünberg, S. Musseleck, C. Starostzik, D. Oesterhelt (1993). Sensory rhodopsin-controlled release of the switch factor fumarate in Halobacterium salinarium. Mol. Microbiol., 10, 1077-1085.

59. W. Marwan, W. Schäfer, D. Oesterhelt (1990). Signal transduction in Halobacterium depends on fumarate. EMBO J., 9, 355-362.

60. R. Barak, I. Giebel, M. Eisenbach (1996). The specificity of fumarate as a switching factor of the bacterial flagellar motor. Mol. Microbiol., 19, 139-144.

61. M. Montrone, M. Eisenbach, D. Oesterhelt, W. Marwan (1998). Regulation of switching frequency and bias of the bacterial flagellar motor by CheY and fumarate. J. Bacteriol., 180, 3375-3380.

62. S.A. Sundberg, M. Alam, M. Lebert, J.L. Spudich, D. Oesterhelt, G.L. Hazelbauer (1990). Characterization of Halobacterium halobium mutants defective in taxis. J. Bacteriol., 172, 2328-2335.

63. S.A. Sundberg, R.A. Bogomolni, J.L. Spudich (1985). Selection and properties of phototaxis-deficient mutants of Halobacterium halobium. J. Bacteriol., 164, 282-287.

64. E. Ferrando-May, M. Krah, W. Marwan, D. Oesterhelt (1993). The methyl-accepting transducer protein Htrl is functionally associated with the photoreceptor sensory rhodopsin 1 in the archaeon Halobacterium salinarium. EMBO J., 12, 2999-3005.

65. E.N. Spudich, J.L. Spudich (1993). The photochemical reactions of sensory rhodopsin I are altered by its transducer. J. Biol. Chem., 268, 16095-16097.

66. K.D. Olson, J.L. Spudich (1993). Removal of the transducer protein from sensory rhodopsin I exposes sites of proton release and uptake during the receptor photocycle. Biophys. J., 65, 2578-2585.

67. B. Liittenberg, E.K. Wolff, M. Engelhard (1998). Heterologous coexpression of the blue light receptor NpSRII and its transducer NpHtrll from Natro-nobacterium pharaonis in the Halobacterium salinarium strain pho81/w restores negative phototaxis. FEBS Lett., 426, 117 120.

68. W. Marwan, D. Oesterhelt (1990). Quantitation of photochromism of sensory rhodopsin-I by computerized tracking of Halobacterium halobium cells. J. Mol. Biol., 215, 277-285.

69. H. Tomioka, T. Takahashi, N. Kamo, Y. Kobatake (1986). Action spectrum of the photoattractant response of Halobacterium halobium in early logarithmic growth phase and the role of sensory rhodopsin. Biochim. Biophys. Acta, 884, 578-584.

70. T. Takahashi, Y. Kobatake (1982). Computer-linked automated method for measurement of the reversal frequency in phototaxis of Halobacterium halobium. Cell Struct. Fund., 7, 183-192.

71. W. Stoeckenius, E.K. Wolff, B. Hess (1988). A rapid population method for action spectra applied to Halobacterium halobium. J. Bacteriol, 170, 2790-2795.

72. T. Takahashi, H. Tomioka, N. Kamo, Y. Kobatake (1985). A photosystem other than PS370 also mediates the negative phototaxis of Halobacterium halobium. FEMS Microbiol. Lett., 28, 161-164.

73. W. Marwan, D. Oesterhelt (1987). Signal formation in the halobacterial photo-phobic response mediated by a fourth retinal protein /(P480). J. Mol. Biol., 195, 333-342.

74. E.N. Spudich, S.A. Sundberg, D. Manor, J.L. Spudich (1986). Properties of a second sensory receptor protein in Halobacterium halobium phototaxis. Proteins, 1, 239-246.

75. B. Nordmann, M.R. Lebert, M. Alam, S. Nitz, H. Kollmannsberger, D. Oesterhelt, G.L. Hazelbauer (1994). Identification of volatile forms of methyl groups released by Halobacterium salinarium. J. Biol. Chem., 269, 16449-16454.

76. E.N. Spudich, T. Takahashi, J.L. Spudich (1989). Sensory rhodopsins I and II modulate a methylation/demethylation system in Halobacterium halobium phototaxis. Proc. Natl. Acad. Sci. U.S.A., 86, 7746-7750.

77. B. Perazzona, J.L. Spudich (1999). Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarum. J. BacterioL, 181, 5676-5683.

78. W. Marwan, S.I. Bibikov, M. Montrone, D. Oesterhelt (1995). Mechanism of photosensory adaptation in Halobacterium salinarium. J. Mol. Biol., 246, 493 499.

79. W. Marwan, P. Hegemann, D. Oesterhelt (1988). Single photon detection by an archaebacterium. J. Mol. Biol., 199, 663-664.

80. W.D. Hoff, K.H. Jung, J.L. Spudich (1997). Molecular mechanism of photo-signaling by archaeal sensory rhodopsins. Annu. Rev. Biophys. Biomol. Struct., 26, 223-258.

81. H. Le Moual, D.E. Koshland (1996). Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J. Mol. Biol, 261, 568-585.

82. X.-N. Zhang, J.L. Spudich (1998). Htrl is a dimer whose interface is sensitive to receptor photoactivation and His-166 replacements in sensory rhodopsin I. J. Biol. Chem., 273, 19722-19728.

83. A.A. Wegener (2000). Untersuchungen zur Wechselwirkung des archaebakteriellen Lichtrezeptors NpSRII mit seinem Transducerprotein NpHtrIL Thesis, University of Dortmund, Germany.

84. A.A. Wegener, J.P. Klare, M. Engelhard (2001). Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J., 20, 5312-5319.

85. M. Krah, W. Marwan, A. Vermeglio, D. Oesterhelt (1994). Phototaxis of Halobacterium salinarium requires a signalling complex of sensory rhodopsin I and its methyl-accepting transducer Htrl. EMBO J., 13, 2150-2155.

86. X.N. Zhang, J. Zhu, J.L. Spudich (1999). The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices. Proc. Natl. Acad. Sei. U.S.A., 96, 857-862.

87. K.K. Kim, H. Yokota, S.H. Kim (1999). Four-helical-bundle structure of the cytoplasmic domain of a serine Chemotaxis receptor. Nature, 400, 787-792.

88. S.B. Williams, Y. Stewart (1999). Functional similarities among two-component sensors and methyl-accepting Chemotaxis proteins suggest a role for linker region amphipathic helices in transmembrane signal transduction. Mol. Microbiol., 33, 1093-1102.

89. M. Krah, W. Marwan, D. Oesterhelt (1994). A cytoplasmic domain is required for the functional interaction of SRI and Htrl in archaeal signal transduction. FEBS Lett., 353, 301-304.

90. V.J. Yao, E.N. Spudich, J.L. Spudich (1994). Identification of distinct domains for signaling and receptor interaction of the sensory rhodopsin I transducer, Htrl. J. Bacteriol., 176, 6931-6935.

91. B. Perazzona, E.N. Spudich, J.L. Spudich (1996). Deletion mapping of the sites on the htrl transducer for sensory rhodopsin I interaction. J. Bacteriol., 178, 6475-6478.

92. G. Schmies (2001). Spektroskopische und elektrophysiologische Untersuchung der beiden archaebakteriellen Photorezeptor/Transducer-Komplexe. Thesis, Universität Dortmund, Germany.

93. G. Schmies, M. Engelhard, P.G. Wood, G. Nagel, E. Bamberg (2001). Electrophysiological characterization of specific interactions between bacterial sensory rhodopsins and their transducers. Proc. Natl. Acad. Sei. U.S.A., 98, 1555-1559.

94. Y. Sudo, M. Iwamoto, K. Shimono, M. Sumi, N. Kamo (2001). Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is ceased by association with the transducer. Biophys. J., 80, 916-922.

95. J.R. Maddock, L. Shapiro (1993). Polar location of the chemoreceptor complex in the Escherichia coli cell. Science, 259, 1717-1723.

96. H. Tomioka, T. Takahashi, N. Kamo, Y. Kobatake (1986). Flash spectrometric identification of a fourth rhodopsin-like pigment in Halobacterium halobium. Biochem. Biophys. Res. Commun., 139, 389-395.

97. E.S. Schegk, D. Oesterhelt (1988). Isolation of a prokaryotic photoreceptor: sensory rhodopsin from halobacteria. EMBO J., 7, 2925-2933.

98. B. Scharf, B. Hess, M. Engelhard (1992). Chromophore of sensory rhodopsin II from Halobacterium halobium. Biochemistry, 31, 12486-12492.

99. B. Scharf, B. Pevec, B. Hess, M. Engelhard (1992). Biochemical and photochemical properties of the photophobic receptors from Halobacterium halobium and Natronobacterium pharaonis. Eur. J. Biochem., 206, 359-366.

100. J. Otomo, W. Marwan, D. Oesterhelt, H. Desel, H. Uhl (1989). Biosynthesis of the two halobacterial light sensors P480 and sensory rhodopsin and variation in gain of their signal transduction chains. J. Bacteriol., 171, 2155-2159.

101. M.P. Krebs, E.N. Spudich, H.G. Khorana, J.L. Spudich (1993). Synthesis of a gene for sensory rhodopsin I and its functional expression in Halobacterium halobium. Proc. Natl. Acad. Sei. U.S.A., 90, 3486-3490.

102. E. Ferrando-May, B. Brustmann, D. Oesterhelt (1993). A C-terminal truncation results in high-level expression of the functional photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium. Mol. Microbiol., 9, 943-953.

103. M.P. Krebs, E.N. Spudich, J.L. Spudich (1995). Rapid high-yield purification and liposome reconstitution of polyhistidine-tagged sensory rhodopsin I. Protein Express. Purific., 6, 780-788.

104. B. Lüttenberg (1998). Heterologe Expression von sensorischem Rhodopsin II aus Natronobacterium pharaonis in Halobacterium salinarium. Thesis, Universität Münster, Germany.

105. K. Shimono, M. Iwamoto, M. Sumi, N. Kamo (1997). Functional expression of pharaonis phoborhodopsin in Escherichia coli. FEBS Lett., 420, 54-56.

106. LP. Hohenfeld, A.A. Wegener, M. Engelhard (1999). Purification of histidine tagged bacteriorhodopsin, pharaonis halorhodopsin and pharaonis sensory rhodopsin II functionally expressed in Escherichia coli. FEBS Lett., 442, 198-202.

107. G. Schmies, I. Chizhov, M. Engelhard (2000). Functional expression of His-tagged sensory rhodopsin I in Escherichia coli. FEBS Lett., 466, 67-69.

108. A.A. Wegener, I. Chizhov, M. Engelhard, H.J. Steinhoff (2000). Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II. J. Mol. Biol., 301, 881-891.

109. A. Losi, A.A. Wegener, M. Engelhard, S.E. Braslavsky (2001). Enthalpy-entropy compensation in a photocycle: The K-to-L transition in sensory rhodopsin II from Natronobacterium pharaonis. J. Am. Chem. Soc., 123, 1766-1767.

110. E.R. Kunji, E.N. Spudich, R. Grisshammer, R. Henderson, J.L. Spudich (2001). Electron crystallographic analysis of two-dimensional crystals of sensory rhodopsin II: a 6.9 A projection structure. J. Mol. Biol., 308, 279-293.

111. J. Soppa, J. Duschl, D. Oesterhelt (1993). Bacterioopsin, haloopsin, and sensory opsin I of the halobacterial isolate Halobacterium sp. strain SGI: Three new members of a growing family. J. Bacteriol., 175, 2720-2726.

112. Y. Mukohata, K. Ihara, T. Tamura, Y. Sugiyama (1999). Halobacterial rhodopsins. J. Biochem. (Tokyo), 125, 649-657.

113. J.A. Bieszke, E.L. Braun, L.E. Bean, S.C. Kang, D.O. Natvig, K.A. Borkovich (1999). The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc. Natl. Acad. Sei. U.S.A., 96, 8034-8039.

114. J.A. Bieszke, E.N. Spudich, K.L. Scott, K.A. Borkovich, J.L. Spudich (1999). A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry, 38, 14138-14145.

115. O. Béjá, L. Aravind, E.V. Koonin, M.T. Suzuki, A. Hadd, L.P. Nguyen, S. Jovanovich, C.M. Gates, R.A. Feldman, J.L. Spudich, E.N. Spudich, E.F. DeLong (2000). Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science, 289, 1902-1906.

116. O. Béjá, E.N. Spudich, J.L. Spudich, M. Leclerc, E.F. DeLong (2001). Proteorhodopsin phototrophy in the ocean. Nature, 411, 786-789.

117. D.R. Baselt, S.P.A. Fodor, R. Van der Steen, J. Lugtenburg, R.A. Bogomolni, R.A. Mathies (1989). Halorhodopsin and sensory rhodopsin contain a C6-C7 s-trans retinal chromophore. Biophys. J., 55, 193-196.

118. J. Hu, R.G. Griffin, J. Herzfeld (1994). Synergy in the spectral tuning of retinal pigments: Complete accounting of the opsin shift in bacteriorhodopsin. Proc. Natl. Acad. Sei. U.S.A., 91, 8880-8884.

119. J. Hirayama, Y. Imamoto, Y. Shichida, T. Yoshizawa, A.E. Asato, R.S.H. Liu, N. Kamo (1994). Shape of the chromophore binding site in pharaonis phoborhodopsin from a study using retinal analogs. Photochem. Photobiol., 60, 388-393.

120. T. Takahashi, B. Yan, P. Mazur, F. Derguini, K. Nakanishi, J.L. Spudich (1990). Color regulation in the archaebacterial phototaxis receptor phoborhodopsin (sensory rhodopsin II). Biochemistry, 29, 8467-8474.

121. K. Shimono, M. Iwamoto, M. Sumi, N. Kamo (2000). Effects of three characteristic amino acid residues of pharaonis phoborhodopsin on the absorption maximum. Photochem. Photobiol., 72, 141 145.

122. K. Shimono, M. Iwamoto, M. Sumi, N. Kamo (1998). V108M mutant of pharaonis phoborhodopsin - substitution caused no absorption change but affected its M-state. J. Biochem. (Tokyo), 124, 404-409.

123. J.Y. Zhu, E.N. Spudich, M. Alam, J.L. Spudich (1997). Effects of substitutions D73E, D73N, D103N and V106M on signaling and pH titration of sensory rhodopsin II. Photochem. Photobiol, 66, 788-791.

124. H. Luecke, B. Schobert, J.K. Lanyi, E.N. Spudich, J.L. Spudich (2001). Crystal structure of sensory rhodopsin II at 2.4 Á: Insights into color tuning and transducer interaction. Science, 293, 1499-1503.

125. I. Chizhov, G. Schmies, R. Seidel, J.R. Sydor, B. Lüt'tenberg, M. Engelhard (1998). The photophobic receptor from Natronobacterium pharaonis-tempemtuvQ and pH dependencies of the photocycle of sensory rhodopsin II. Biophys. J., 75, 999-1009.

126. K. Shimono, M. Kitami, M. Iwamoto, N. Kamo (2000). Involvement of two groups in reversal of the bathochromic shift of pharaonis phoborhodopsin by chloride at low pH. Biophys. Chem., 87, 225-230.

127. M. Engelhard, B. Scharf, F. Siebert (1996). Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis. FEBS Lett., 395, 195-198.

Y. Kimura, A. Ikegami, W. Stoeckenius (1984). Salt and pH-dependent changes of the purple membrane absorption spectrum. Photochem. Photobiol., 40, 641— 646.

B. Scharf, M. Engelhard (1994). Blue halorhodopsin from Natronobacterium pharaonis: Wavelength regulation by anions. Biochemistry, 33, 6387-6393. E.N. Spudich, W.S. Zhang, M. Alam, J.L. Spudich (1997). Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its proto-nated Schiff base Asp-73 interhelical salt bridge. Proc. Natl. Acad. Sei. U.S.A., 94, 4960^1965.

K.D. Olson, P. Deval, J.L. Spudich (1992). Absorption and photochemistry of sensory rhodopsin I: pH effects. Photochem. Photobiol., 56, 1181-1187.

A. Losi, S.E. Braslavsky, W. Gärtner, J.L. Spudich (1999). Time-resolved absorption and photothermal measurements with sensory rhodopsin I from Halobacterium salinarium. Biophys. J., 76, 2183-2191.

I. Lutz, A. Sieg, A.A. Wegener, M. Engelhard, I. Boche, M. Otsuka, D. Oesterhelt, J. Wachtveitl, W. Zinth (2001). Primary reactions of sensory rhodopsins. Proc. Natl. Acad. Sei. U.S.A., 98, 962-967.

P. Rath, K.D. Olson, J.L. Spudich, K.J. Rothschild (1994). The Schiff base counterion of bacteriorhodopsin is protonated in sensory rhodopsin I: Spectroscopic and functional characterization of the mutated proteins D76N and D76A. Biochemistry, 33, 5600-5606.

O. Bousché, E.N. Spudich, J.L. Spudich, K.J. Rothschild (1991). Conformational changes in sensory rhodopsin I: Similarities and differences with bacteriorhodopsin, halorhodopsin, and rhodopsin. Biochemistry, 30, 5395-5400. G. Metz, F. Siebert, M. Engelhard (1992). Asp85 is the only internal aspartic acid that gets protonated in the M intermediate and the purple-to-blue transition of bacteriorhodopsin: A solid-state 13C CP-MAS NMR investigation. FEBS Lett., 303, 237-241.

R.A. Bogomolni, W. Stoeckenius, I. Szundi, E. Perozo, K.D. Olson, J.L. Spudich (1994). Removal of transducer Htrl allows electrogenic proton translocation by sensory rhodopsin I. Proc. Natl. Acad. Sei. U.S.A., 91, 10188-10192.

U. Haupts, C. Haupts, D. Oesterhelt (1995). The photoreceptor sensory rhodopsin I as a two-photon-driven proton pump. Proc. Natl. Acad. Sei. U.S.A., 92, 3834-3838.

P. Rath, E.N. Spudich, D.D. Neal, J.L. Spudich, K.J. Rothschild (1996). Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I. Biochemistry, 35, 6690-6696. S.P.A. Fodor, R. Gebhard, J. Lugtenburg, R.A. Bogomolni, R.A. Mathies

(1989). Structure of the retinal chromophore in sensory rhodopsin I from resonance Raman spectroscopy. J. Biol. Chem., 264, 18280-18283.

Y. Imamoto, Y. Shichida, J. Hirayama, H. Tomioka, N. Kamo, T. Yoshizawa (1992). Chromophore configuration of pharaonis phoborhodopsin and its isomerization on photon absorption. Biochemistry, 31, 2523-2528. J. Hirayma, N. Kamo, Y. Imamoto, Y. Shichida, T. Yoshizawa (1995). Reason for the lack of light-dark adaptation in pharaonis phoborhodopsin: Reconstitution with 13-ds-retinal. FEBS Lett., 364, 168-170.

B. Yan, T. Takahashi, R. Johnson, F. Derguini, K. Nakanishi, J.L. Spudich

(1990). All-transl\3-cis isomerization of retinal is required for phototaxis signaling by sensory rhodopsins in Halobacterium halobium. Biophys. J., 57, 807-814.

144. M. Tsuda, B. Nelson, C.H. Chang, R. Govindjee, T.G. Ebrey (1985). Characterisation of the chromophore of the third rhodopsin-like pigment of Halobacterium halobium and its photoproduct. Biophys. J., 47, 721-724.

145. U. Haupts, W. Eisfeld, M. Stockburger, D. Oesterhelt (1994). Sensory rhodopsin I photocycle intermediate SRI380 contains 13-eis retinal bound via an unproto-nated Schiff base. FEBS Lett., 356, 25-29.

146. J.L. Spudich, D.A. McCain, K. Nakanishi, M. Okabe, N. Shimizu, H. Rodman, B. Honig, R.A. Bogomolni (1986). Chromophore/protein interaction in bacterial sensory rhodopsin and bacteriorhodopsin. Biophys. J., 49, 479^183.

147. B. Yan, T. Takahashi, D.A. McCain, V.J. Rao, K. Nakanishi, J.L. Spudich (1990). Effects of modifications of the retinal ß-ionone ring on archaebacterial sensory rhodopsin I. Biophys. J., 57, 477-483.

148. B. Yan, A. Xie, G.U. Nienhaus, Y. Katsuta, J.L. Spudich (1993). Steric constraints in the retinal binding pocket of sensory rhodopsin I. Biochemistry, 32, 10224-10232.

149. B. Yan, K. Nakanishi, J.L. Spudich (1991). Mechanism of activation of sensory rhodopsin I: Evidence for a steric trigger. Proc. Natl. Acad. Sei. U.S.A., 88, 9412-9416.

150. U.M. Ganter, E.D. Schmid, D. Perez-Sala, R.R. Rando, F. Siebert (1989). Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation. Biochemistry, 28, 5954-5962.

151. I. Chizhov, D.S. Chernavskii, M. Engelhard, K.H. Müller, B.V. Zubov, B. Hess (1996). Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys. J., 71, 2329-2345.

152. A. Losi, A.A. Wegener, M. Engelhard, W. Gärtner, S.E. Braslavsky (1999). Time-resolved absorption and photothermal measurements with recombinant sensory rhodopsin II from Natronobacterium pharaonis. Biophys. J., 11, 3277-3286.

153. D. Zhang, D. Mauzerall (1996). Volume and enthalpy changes in the early steps of bacteriorhodopsin photocycle studied by time-resolved photoacoustics. Biophys. J., 71, 381-388.

154. A. Losi, A.A. Wegener, M. Engelhard, W. Gärtner, S.E. Braslavsky (2000). Aspartate 75 mutation in sensory rhodopsin II from Natronobacterium pharaonis does not influence the production of the K-like intermediate, but strongly affects its relaxation pathway. Biophys. J., 78, 2581-2589.

155. A.R. Bogomolni, J.L. Spudich (1982). Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc. Natl. Acad. Sei. U.S.A., 19, 6250-6254.

156. T. Takahashi, M. Watanabe, N. Kamo, Y. Kobatake (1985). Negative phototaxis from blue light and role of third rhodopsin-like pigment in Halobacterium cutirubrum. Biophys. J., 48, 235-240.

157. R.A. Bogomolni, J.L. Spudich (1987). The photochemical reactions of bacterial sensory rhodopsin-I. Flash photolysis study in the one microsecond to eight second time window. Biophys. J., 52, 1071-1075.

158. X.N. Zhang, J.L. Spudich (1997). His(166) is critical for active-site proton transfer and phototaxis signaling by sensory rhodopsin I. Biophys. J., 73, 1516-1523.

159. T.E. Swartz, I. Szundi, J.L. Spudich, R.A. Bogomolni (2000). New photoin-termediates in the two photon signaling pathway of sensory rhodopsin-I. Biochemistry, 39, 15101-15109.

160. I. Szundi, T.E. Swartz, R.A. Bogomolni (2001). Multicolored protein conformation states in the photocycle of transducer-free sensory rhodopsin-I. Biophys. J., 80, 469^79.

161. D. Manor, C.A. Hasselbacher, J.L. Spudich (1988). Membrane potential modulates photocycling rates of bacterial rhodopsins. Biochemistry, 27, 5843 5848.

162. H. Michel, D. Oesterhelt (1980). Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient. Biochemistry, 19, 4607-4614.

163. H. Michel, D. Oesterhelt (1980). Electrochemical proton gradient across the cell membrane of Halobacterium halobium: Comparison of the light-induced increase with the increase of intracellular adenine triphosphate under steady-state illumination. Biochemistry, 19, 4615-4619.

164. R. Wittenberg (1995). Charakterisierung der Elektronentransportkette und Untersuchungen zur Bioenergetik in Natronobacterium pharaonis. Thesis, RuhrUniversität Bochum, Germany.

165. H. Tomioka, N. Kamo, T. Takahashi, Y. Kobatake (1984). Photochemical intermediate of third rhodopsin-like pigment in Halobacterium halobium by simultaneous illumination with red and blue light. Biochem. Biophy. Res. Commun., 123, 989-994.

166. Y. Shichida, Y. Imamoto, T. Yoshizawa, T. Takahashi, H. Tomioka, N. Kamo, Y. Kobatake (1988). Low-temperature spectrophotometry of phoborhodopsin. FEBS Lett., 236, 333-336.

167. V. Bergo, E.N. Spudich, K.L. Scott, J.L. Spudich, K.J. Rothschild (2000). FTIR analysis of the SII54o intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Biochemistry, 39, 2823-2830.

168. Y. Imamoto, Y. Shichida, T. Yoshizawa, H. Tomioka, T. Takahashi, K. Fujikawa, N. Kamo, Y. Kobatake (1991). Photoreaction cycle of phoborhodopsin studied by low-temperature spectrophotometry. Biochemistry, 30, 7416-7424.

169. Y. Imamoto, Y. Shichida, J. Hirayama, H. Tomioka, N. Kamo, T. Yoshizawa (1992). Nanosecond laser photolysis of phoborhodopsin from Natronobacterium pharaonis: Appearance of KL and L intermediates in the photocycle at room temperature. Photochem. Photobiol., 56, 1129-1134.

170. J. Hirayama, Y. Imamoto, Y. Shichida, N. Kamo, H. Tomioka, T. Yoshizawa (1992). Photocycle of phoborhodopsin from haloalkaliphilic bacterium (Natronobacterium pharaonis) studied by low-temperature spectrophotometry. Biochemistry, 31, 2093-2098.

171. M. Miyazaki, J. Hirayama, M. Hayakawa, N. Kamo (1992). Flash photolysis study on pharaonis phoborhodopsin from a haloalkaliphilic bacterium (Natronobacterium pharaonis). Biochim. Biophys. Acta, 1140, 22-29.

172. S.P. Balashov, M. Sumi, N. Kamo (2000). The M intermediate of pharaonis phoborhodopsin is photoactive. Biophys. J., 78, 3150-3159.

173. J. Tittor, C. Soell, D. Oesterhelt, H.-J. Butt, E. Bamberg (1989). A defective proton pump, point-mutated bacteriorhodopsin Asp96—>Asn is fully reactivated by azide. EMBO J., 8, 3477-3482.

174. K. Takao, T. Kikukawa, T. Araiso, N. Kamo (1998). Azide accelerates the decay of M-intermediate of pharaonis phoborhodopsin. Biophys. Chem., 73, 145-153.

175. U. Haupts, E. Bamberg, D. Oesterhelt (1996). Different modes of proton translocation by sensory rhodopsin I. EMBO J., 15, 1834-1841.

176. M. Iwamoto, K. Shimono, M. Sumi, K. Koyama, N. Kamo (1999). Light-induced proton uptake and release of pharaonis phoborhodopsin detected by a photoelectrochemical cell. J. Phys. Chem. B, 103, 10311-10315.

177. J. Sasaki, J.L. Spudich (1999). Proton circulation during the photocycle of sensory rhodopsin II. Biophys. J., 77, 2145-2152.

178. J.L. Spudich, R.A. Bogomolni (1984). Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature, 312, 509-513.

179. Z. Dancshazy, L.A. Drachev, P. Ormos, K. Nagy, V.P. Skulachev (1978). Kinetics of the blue light-induced inhibition of photoelectric activity of bacteriorhodopsin. FEBS Lett., 96, 59-63.

180. H.J. Butt, K. Fendler, E. Bamberg, J. Tittor, D. Oesterhelt (1989). Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO J., 8, 1657-1663.

181. M.S. Braiman, T. Mogi, T. Marti, L.J. Stern, H.G. Khorana, K.J. Rothschild (1988). Vibrational spectroscopy of bacteriorhodopsin mutants: Light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry, 27, 8516-8520.

182. K. Gerwert, B. Hess, J. Soppa, D. Oesterhelt (1989). Role of aspartate-96 in protein translocation by bacteriorhodopsin. Proc. Natl. Acad. Sei. U.S.A., 86, 4943^1947.

183. G. Nagel, B. Kelety, B. Mockel, G. Buldt, E. Bamberg (1998). Voltage dependence of proton pumping by bacteriorhodopsin is regulated by the voltage-sensitive ratio of M-l to M-2. Biophys. J., 74, 403-412.

184. K.H. Jung, E.N. Spudich, P. Dag, J.L. Spudich (1999). Transducer-binding and transducer-mutations modulate photoactive-site-deprotonation in sensory rhodopsin I. Biochemistry, 38, 13270-13274.

185. J. Sasaki, J.L. Spudich (2000). Proton transport by sensory rhodopsins and its modulation by transducer-binding. Biochem. Biophys. Acta, 1460, 230-239.

186. S.-W. Chiu, L.K. Nicholson, M.T. Brenneman, S. Subramaniam, Q. Teng, J.A. McCammon, T.A. Cross, E. Jakobsson (1991). Molecular dynamics computations and solid state nuclear magnetic resonance of the gramicidin cation channel. Biophys. J., 60, 974-978.

187. J. Sasaki, J.L. Spudich (1998). The transducer protein Htrll modulates the lifetimes of sensory rhodopsin II photointermediates. Biophys. J., 75, 2435-2440.

188. K.D. Olson, X.-N. Zhang, J.L. Spudich (1995). Residue replacements of buried aspartyl and related residues in sensory rhodopsin I: D201N produces inverted phototaxis signals. Proc. Natl. Acad. Sci. U.S.A., 92, 3185-3189.

189. E. Hildebrand, A. Schimz (1987). Role of the response oscillator in inverse responses of Halobacterium halobium to weak light stimuli. J. Bacteriol., 169, 254-259.

190. D.A. McCain, L.A. Amici, J.L. Spudich (1987). Kinetically resolved states of the Halobacterium halobium flagellar motor switch and modulation of the switch by sensory rhodopsin I. J. Bacteriol, 169, 4750-4758.

191. J.L. Spudich, J.K. Lanyi (1996). Shuttling between two protein conformations -the common mechanism for sensory transduction and ion transport. Curr. Op in. Cell Biol., 8, 452-457.

192. K.H. Jung, J.L. Spudich (1996). Protonatable residues at the cytoplasmic end of transmembrane helix-2 in the signal transducer Htrl control photochemistry and function of sensory rhodopsin I. Proc. Natl. Acad. Sci. U.S.A., 93, 6557-6561.

193. K.H. Jung, J.L. Spudich (1998). Suppressor mutation analysis of the sensory rhodopsin I-transducer complex-insights into the color-sensing mechanism. J. Bacteriol., 180, 2033-2042.

194. J.M. Sturtevant (1977). Heat capacity and entropy changes in processes involving proteins. Proc. Natl. Acad. Sci. U.S.A., 74, 2236-2240.

195. J.R. Livingstone, R.S. Spolar, M.T. Record (1991). Contribution to the thermodynamics of protein folding from the reduction in water-accessible nonpolar surface area. Biochemistry, 30, 4237 4244.

196. R. Varadarajan, P.R. Connelly, J.M. Sturtevant, F.M. Richards (1992). Heat capacity changes for protein-peptide interactions in the ribonuclease S system. Biochemistry, 31, 1421-1426.

197. R.S. Spolar, M.T. Record (1994). Coupling of local folding to site-specific binding of proteins to DNA. Science, 263, 777-784.

198. D.L. Foster, S.L. Mowbray, B.K. Jap, D.E. Koshland (1985). Purification and characterization of the aspartate chemoreceptor. J. Biol. Chem., 260, 1170611710.

199. W.L. Hubbell, D.S. Cafiso, C. Altenbach (2000). Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol., 7, 735-739.

200. W.L. Hubbell, A. Gross, R. Langen, M.A. Lietzow (1998). Recent advances in site-directed spin labeling of proteins. Curr. Opin. Struc. Biol., 8, 649-656.

201. H.J. Steinhoff, N. Radzwill, W. Thevis, V. Lenz, D. Brandenburg, A. Antson, G. Dodson, A. Wollmer (1997). Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophys. J., 73, 3287-3298.

202. M. Pfeiffer, T. Rink, K. Gerwert, D. Oesterhelt, H.J. Steinhoff (1999). Site-directed spin-labeling reveals the orientation of the amino acid side-chains in the E-F loop of bacteriorhodopsin. J. Mol. Biol., 287, 163-171.

203. C. Altenbach, T. Marti, H.G. Khorana, W.L. Hubbell (1990). Transmembrane protein structure: Spin labeling of bacteriorhodopsin mutants. Science, 248, 1088-1092.

204. T. Rink, J. Riesle, D. Oesterhelt, K. Gerwert, H.J. Steinhoff (1997). Spin-labeling studies of the conformational changes in the vicinity of D36, D38, T46, and E161 of bacteriorhodopsin during the photocycle. Biophys. J., 73, 983-993.

205. N. Radzwill, K. Gerwert, H.-J. Steinhoff (2001). Time-resolved detection of transient movement of helices F and G in doubly spin-labeled bacteriorhodopsin. Biophys. J., 80, 2856-2866.

206. T. Rink, M. Pfeiffer, D. Oesterhelt, K. Gerwert, H.J. Steinhoff (2000). Unraveling photoexcited conformational changes of bacteriorhodopsin by time resolved electron paramagnetic resonance spectroscopy. Biophys. J., 78, 1519-1530.

207. W.J. Fantl, D.E. Johnson, L.T. Williams (1993). Signalling by receptor tyrosine kinases. Annu. Rev. Biochem., 62, 453^181.

208. S. Subramaniam, M. Gerstein, D. Oesterhelt, R. Henderson (1993). Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J., 12, 1-8.

209. H. Luecke, B. Schobert, H.T. Richter, J.P. Cartailler, J.K. Lanyi (1999). Structural changes in bacteriorhodopsin during ion transport at 2 Angstrom resolution. Science, 286, 255-261.

210. J. Vonck (2000). Structure of the bacteriorhodopsin mutant F219L N intermediate revealed by electron crystallography. EMBO J., 19, 2152-2160.

211. D.L. Farrens, C. Altenbach, K. Yang, W.L. Hubbell, H.G. Khorana (1996). Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science, 274, 768-770.

212. B. Yan, T. Takahashi, R. Johnson, J.L. Spudich (1991). Identification of signaling states of a sensory receptor by modulation of lifetimes of stimulus-induced conformations: The case of sensory rhodopsin II. Biochemistry, 30, 10686-10692.

213. S.A. Chervitz, J.J. Falke (1996). Molecular mechanism of transmembrane signaling by the aspartate receptor - A model. Proc. Natl. Acad. Sci. U.S.A., 93, 2545-2550.

214. K.M. Ottemann, W. Xiao, Y.K. Shin, D.E.J. Koshland (1999). A piston model for transmembrane signaling of the aspartate receptor. Science, 285, 1751-1754.

215. J. Stock, S. Da Re (1999). A receptor scaffold mediates stimulus-response coupling in bacterial chemotaxis. Cell Calcium, 26, 157-164.

216. I. Chizhov, I., M. Engelhard (2001). Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. Biophys. J., 81, 1600-1612.

Note: After the writing of this chapter another structure of NpSRII was published (A. Royant, P. Nollert, K. Edman, R. Neutze, E.M. Landau, E. Pebay-Peyroula, J. Navarro (2001). X-ray structures of sensory rhodopsin II at 2.1 A resolution. Proc. Natl. Acad. Sci. USA, 98,10131-10136). In addition the crystal structure of the receptor/ transducer couple is now available (V.I. Gordeliy, J. Labahn, R. Moukhametzianov, R. Efremov, J. Granzin, R. Schlesinger, G. Buldt, T. Savapol, A.J. Scheidig, J.P. Klare, M. Engelhard (2002). Molecular basis of transmembrane signalling by sensory rhodopsin Il-transducer complex. Nature, 419, 484-487.

Chapter 2

Was this article helpful?

0 0

Post a comment