References

Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233-1251 Andrés-Colas N, Sancenon V, Rodríguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Peñarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225-236

Argüello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-

type ATPases. J Membr Biol 195:93-108 Argüello JM, Eren E, Gonzalez-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233-248 Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in

Arabidopsis. Plant Physiol 126:696-706 Baekgaard L, Mikkelsen MD, S0rensen DM, Hegelund JN, Persson DP, Mills RF, Yang Z, Husted S, Andersen JP, Buch-Pedersen MJ, Schjoerring JK, Williams LE, Palmgren MG (2010) A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. J Biol Chem 285:31243-31252 Barabasz A, Kramer U, Hanikenne M, Rudzka J, Antosiewicz DM (2010) Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply. J Exp Bot 61:3057-3067 Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618-628

Becher M, Talke IN, Krall L, Krüamer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251-268 Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci USA 107:18724-18728

Bernal M, Testillano PS, Alfonso M, del Carmen RM, Picorel R, Yruela I (2006) Identification and subcellular localization of the soybean copper P1B-ATPase GmHMA8 transporter. J Struct Biol 158:46-58

Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569:140-148 Binder BM, Rodriguez FI, Bleecker AB (2010) The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis. J Biol Chem 285:37263-37270 Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium species of indicator plants. J Geochem Explorat 7:49-57 Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322-330 Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052-1065 del Pozo T, Cambiazo V, Gonzalez M (2010) Gene expression profiling analysis of copper homeostasis in Arabidopsis thaliana. Biochem Biophys Res Commun 393:248-252 Dembinsky D, Woll K, Saleem M, Liu Y, Fu Y, Borsuk LA, Lamkemeyer T, Fladerer C, Madlung J, Barbazuk B, Nordheim A, Nettleton D, Schnable PS, Hochholdinger F (2007) Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol 145:575-588

Dutta SJ, Liu J, Stemmler AJ, Mitra B (2007) Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity. Biochemistry 46:3692-3703

Eren E, Argüuello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type

ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136:3712-3723 Eren E, Kennedy DC, Maroney MJ, Arguello JM (2006) A novel regulatory metal binding domain is present in the C terminus of Arabidopsis Zn2+-ATPase HMA2. J Biol Chem 281:33881-33891

Eren E, Gonzalez-Guerrero M, Kaufman BM, Argüello JM (2007) Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn(2+)-ATPase HMA2. Biochemistry 46:7754-7764

Fan B, Rosen BP (2002) Biochemical characterization of CopA, the Escherichia coli Cu(I)-

translocating P-type ATPase. J Biol Chem 277:46987-46992 Gomez-Galera S, Rojas E, Sudhakar D, Zhu C, Pelacho AM, Capell T, Christou P (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19:165-180

Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P (2004) AtHMA3, a plant P1B-

ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561:22-28 Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391-395 Higuchi M, Ozaki H, Matsui M, Sonoike K (2009) A T-DNA insertion mutant of AtHMA1 gene encoding a Cu transporting ATPase in Arabidopsis thaliana has a defect in the water-water cycle of photosynthesis. J Photochem Photobiol B 94:205-213 Himelblau E, Amasino RM (2000) Delivering copper within plant cells. Curr Opin Plant Biol 3:205-210

Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383-393 Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327-1339 Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M (2010) A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 61(3):923-934 Kobayashi Y, Kuroda K, Kimura K, Southron-Francis JL, Furuzawa A, Kimura K, Iuchi S, Kobayashi M, Taylor GJ, Koyama H (2008) Amino acid polymorphisms in strictly conserved domains of a P-type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis. Plant Physiol 148(2):969-980 Krämer U (2009) The dilemma of controlling heavy metal accumulation in plants. New Phytol 181:3-5

Lee SKim, Y-Y LY, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831-842 Liang HM, Lin TH, Chiou JM, Yeh KC (2009) Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environ Pollut 157:1945-1952

Lochlainn SP, Bowen HC, Fray RG, Hammond JP, King GJ, White PJ, Graham NS, Broadley MR (2011) Tandem quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS One 6:e17814 Lowe J, Vieyra A, Catty P, Guillain F, Mintz E, Cuillel M (2004) A mutational study in the transmembrane domain of Ccc2p, the yeast Cu(I)-ATPase, shows different roles for each Cys-Pro-Cys cysteine. J Biol Chem 279:25986-25994 Mandal AK, Arguello JM (2003) Functional roles of metal binding domains of the Archaeglobus fulgidus Cu(+)-ATPase CopA. Biochemistry 42:11040-11047 Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3-18 Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M (2010) Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cell Mol Life Sci 67:3763-3784 Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of

AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164-176 Mills RF, Francini A, Ferreira da Rocha PS, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783-791

Mills RF, Valdes B, Duke M, Peaston KA, Lahner B, Salt DE, Williams LE (2010) Functional significance of AtHMA4 C-terminal domain in plants. PLoS One 5:e13388 Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190-199 M0ller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286:1-51 Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894-904

Moreno I, Norambuena L, Maturana D, Toro M, Vergara C, Orellana A, Zurita-Silva A, Ordenes VR (2008) AtHMA1 Is a thapsigargin-sensitive Ca2+/heavy metal pump. J Biol Chem 283:9633-9641

Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants.

Nat Chem Biol 5:333-340 Palmgren MG, Clemens S, Williams LE, Kramer U, Borg S, Schj0rring JK, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464-473 Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance: characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814-3823 Puig S, Mira H, Dorcey E, Sancenon V, Andres-Colas N, Garcia-Molina A, Burkhead JL, Gogolin KA, Abdel-Ghany SE, Thiele DJ, Ecker JR, Pilon M, Peflarrubia L (2007) Higher plants possess two different types of ATX1-like copper chaperones. Biochem Biophys Res Commun 354:385-390

Raboy V (2007) The ABCs of low-phytate crops. Nat Biotechnol 25:874-875

Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Sci 180:169-181 Roosens NHCJ, Willems G, Saumitoi-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208-215 Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643-668

Sazinsky MH, Agarwal S, Argüello JM, Rosenzweig AC (2006a) Structure of the actuator domain from the Archaeoglobus fulgidus Cu(+)-ATPase. Biochemistry 45:9949-9955 Sazinsky MH, Mandal AK, Arguello JM, Rosenzweig AC (2006b) Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu +—ATPase. J Biol Chem 281:11161-11166 Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyard J, Richaud P, Rolland N (2005) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882-2892

Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of

Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15(6):1333-1346 Siemianowski O, Mills RF, Williams LE, Antosiewicz DM (2011) Expression of the P(iB) -type ATPase AtHMA4 in tobacco modifies Zn and Cd root to shoot partitioning and metal tolerance. Plant Biotechnol J 9:64-74 Talke IN, Hanikenne M, Kramer U (2006) Zinc-dependent global transcriptional control, tran-scriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148-167 Tauris B, Borg S, Gregersen PL, Holm PB (2009) A roadmap for zinc trafficking in the developing barley grainbased on laser capture microdissection and gene expression profiling. J Exp Bot 60:1333-1347

Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T,

Akagi H (2010) A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet 120:1175-1182 Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF (2009) Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50:2223-2233 Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107:16500-16505 Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Zambrano MC, Kaskie M, Ebbs S, Kochian LV, Ma JF (2011) Elevated expression of TcHMA3 plays a role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi cearulescens. Plant J. doi: doi:10.1111/j.1365-313X.2011.04548.x Van Dillewijn P, Couselo JL, Corredoira E, Delgado A, Wittich RM, Ballester A, Ramos JL (2008) Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405-7410 Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306-312 Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch. FEBS Lett 579:1515-1522 White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49-84

Willems G, Dräger DB, Courbot M, Gode C, Verbruggen N, Saumitou-Laprade P (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. Halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176:659-674 Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S, Tohge T, Fernie AR, Gunther D, Gruissem W, Sautter C (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:631-644 Woeste KE, Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12:443-455

Wong CK, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot

Cd translocation in Arabidopsis thaliana. New Phytol 181:71-78 Wong CK, Jarvis RS, Sherson SM, Cobbett CS (2009) Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana. New Phytol 181:79-88

Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin a (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303-305

Yogeeswaran K, Frary A, York TL, Amenta A, Lesser AH, Nasrallah JB, Tanksley SD, Nasrallah ME (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505-515 Yoshimizu T, Omote H, Wakabayashi T, Sambongi Y, Futai M (1998) Essential Cys-Pro-Cys motif of Caenorhabditis elegans copper transport ATPase. Biosci Biotechnol Biochem 62:1258-1260

Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373-380

Zimmermann M, Clarke O, Gulbis JM, Keizer DW, Jarvis RS, Cobbett CS, Hinds MG, Xiao Z, Wedd AG (2009) Metal binding affinities of Arabidopsis zinc and copper transporters: selectivity's match the relative, but not the absolute, affinities of their amino-terminal domains. Biochemistry 48:11640-11654

Was this article helpful?

0 0
Growing Soilless

Growing Soilless

This is an easy-to-follow, step-by-step guide to growing organic, healthy vegetable, herbs and house plants without soil. Clearly illustrated with black and white line drawings, the book covers every aspect of home hydroponic gardening.

Get My Free Ebook


Post a comment