1. Shaw, B.P., Sahu, S.K., and Mishra R.K. Heavy metal induced oxidative damage in terrestrial plants, in Heavy Metal Stress in Plants — from Biomolecules to Ecosystems, Prasad, M.N.V. (Ed.). Springer-Verlag, Heidelberg, 2004, chap. 4.

2. Ross, S.M. Toxic Metals in Soil Plant Systems, John Wiley & Sons, Chichester, U.K., 469, 1994.

3. De Miranda, J.R. et al. Metallothionein genes from the flowering plant Mimulus guttatus, FEBS Lett., 260, 277, 1990.

4. Evans, I.M. et al. A gene from pea (Pisum sativum L.) with homology to metallothionein genes, FEBS Lett., 262, 29, 1990.

5. Okumura, N. et al. An iron deficiency-specific cDNA from barley roots having two homologous cysteine-rich MT domains, Plant Mol. Biol., 17, 531, 1991.

6. Nakanishi, H. et al. A plant metallothionein-like gene from iron deficiency barley roots. GenBank accession no. D50641, 1995.

7. De Framond, A.J. A metallothionein-like gene from maize (Zea mays). Cloning and characterization, FEBS Lett., 290, 103, 1991.

8. Chevalier, C. et al. Molecular cloning and characterization of six cDNAs expressed during glucose starvation in excised maize (Zea mays L.) root tips, Plant Mol. Biol., 28, 473, 1995.

9. Snowden, K.C. and Gardner, R.C. Five genes induced by aluminum in wheat (Triticum aestivum L.) roots, Plant Physiol., 103, 855, 1993.

10. Ellison, N.W. Sequence analysis of two cDNA clones encoding metallothionein-like proteins from white clover (Trifolium repens L.), GenBank accession no. Z26493, 1993.

11. Zhou, J. and Goldsbrough, P.B. Functional homologs of full gal metallothionein genes from Arabi-dopsis, Plant Cell, 6, 875, 1994.

12. Zhou, J. and Goldsbrough, P.B. Structure, organization and expression of the metallothionein gene family in Arabidopsis, Mol. Gen. Genet., 248, 318, 1995.

13. Yeh, S-C., Hsieh, H-M., and Huang, P.C. Transcripts of metallothionein genes in Arabidopsis thaliana. DNA sequence, J. Seq. Map, 5, 141, 1995.

14. Buchanan-Wollaston, V. Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus. Identification of a gene encoding a senescence-specific metal lothionein-like protein, Plant Physiol., 105, 839, 1994.

15. Hsieh, H-M., Liu, W-K., and Huang, P.C. A novel stress-inducible metallocell biochemistry and biophysics thionein-like gene from rice, Plant Mol. Biol., 28, 381, 1995.

16. Lee, M.C., Kim, C.S., and Eun, M.Y. Characterization of metallothionein-like protein from rice, GenBank accession no. AFO17366, 1997.

17. Hudspeth, R.L. et al. Characterization and expression of metallothionein-like genes in cotton, Plant Mol. Biol., 31, 701, 1996.

18. Foley, R.C., Liang, Z.M., and Singh, K.B. Analysis of type 1 metallothionein cDNAs in Viciafaba, Plant Mol. Biol., 33, 583, 1997.

19. Ma, M. et al. Cloning and sequencing of the thetaliothionein-like cDNA from Festuca rubra cv. Merlin, GenBank accession no. U96646, 1997.

20. Misra, S. and Gedamu, L. Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants, Theor. Appl. Genet., 78, 161, 1989.

Pan, A. Alpha-domain of human metallothionein IA can bind to metals in transgenic tobacco plants, Molecular Gen. Genet., 242, 666, 1994.

Evans, K.M. et al. Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function, Plant Mol. Biol., 20, 1019, 1992.

Hasegawa, I. et al. Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1), Plant Soil, 196, 277, 1997.

Ezaki, B. et al. Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress, Plant Physiol., 122, 657, 2000.

Goto, F., Yoshihara, T., Shigemoto, N., and Toki Sand Takaiwa, F. Iron fortification of rice seed by the soybean ferritin gene, Nat. Biotechnol., 17, 282, 1998.

Van der Zaal, B. J. et al. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation, Plant Physiol., 119, 1047-1055, 1999.

Hirschi, K.D. et al. Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance, Plant Physiol., 124, 125, 1999.

Arazi, T. et al. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants, Plant J., 20, 171, 1999.

Samuelsen, A.I., Martin, R.C., Mok, D.W.S., and Machteld, C.M. Expression of the yeast FRE genes in transgenic tobacco, Plant Physiol., 118, 51, 1998.

Curie, C. et al. Involvement of Nramp1 from Arabidopsis thaliana in iron transport, Biochem. J., 347, 749, 2000.

Thomine, S. et al. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes, Proc. Natl. Acad. Sci. USA, 97, 4991, 2000. Rugh, C.L., Bizily, S.P., and Meagher, R.B. Phytoreduction of environmental pollution, in Phytore-mediation of Toxic Metal Metals Using Plants to Clean up the Environment, Raskin I. and Ensley, B.D., Eds. John Wiley & Sons, New York, 2000, 151-171.

Bizily, S.P. Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials, Proc. Natl. Acad. Sci. USA, 96, 6808, 1999.

Moffat, A.S. Engineering plants to cope with metals, Science, 285, 369, 1999.

Kawashima, I. et al. Isolation of a gene for a metallothionein-like protein from soybean, Plant Cell

Takahashi, K. GenBank accession no.X62818, 1991.

Weig, A. and Komor, E. Isolation of a class II metallothionein cDNA from Ricinus communis L., GenBank accession no. L02306, 1992.

Foley, R.C. and Singh, K.B. Isolation of a Vicia faba metallothionein-like gene, expression in foliar trichomes, Plant Mol. Biol., 26, 435, 1994.

Ledger, S.E. and Gardner, R.C. Cloning and characterization of five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var. deliciosa), Plant Mol. Biol., 25, 877, 1994.

Moisyadi, S. and Stiles, J.I. A cDNA encoding a metallothionein I-like protein from coffee leaves (Coffea arabica), Plant Physiol., 107, 295, 1995.

Kim, H.U. et al. Nucleotide sequence of cDNA clone encoding a metallothionein-like protein from Chinese cabbage, Plant Physiol., 108, 863, 1995.

LaRosa, P.C. and Smigocki, A.C. A plant metallothionein is modulated by cytokinin. GenBank accession no. U35225, 1995.

Choi, D. et al. Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection, Plant Physiol., 112, 353, 1996. Ellison, N.W. and White, D.W.R. Isolation of two cDNA clones encoding metallothionein-like proteins from Trifolium repens L., Plant Physiol., 112, 446. GenBank accession no. Z26492, 1996. Kitashiba, H. et al. Identification of genes expressed in the shoot apex of Brassica campestris during floral transition, Sex. Plant Reprod., 9, 186, 1996.

Hsieh, H.M. et al. RNA expression patterns of a type 2 metallothionein-like gene from rice, Plant Mol. Biol., 32, 525, 1996.

47. Giritch, A. et al. Cloning and characterization of metallothionein-like genes family from tomato, GenBank accession nos. Z68138, Z68309, Z6831O, 1995, 1998.

48. Whitelaw, C.A. et al. The isolation and characterization of type II metallothionein-like genes from tomato (Lycopersicon esculenturn L.), Plant Mol. Biol., 33, 504, 1997.

49. Buchanan-Wollaston, V. and Ainsworth, C. Leaf senescence in Brassica napus, cloning of senescence related genes by subtractive hybridization, Plant Mol. Biol., 33, 821, 1997.

50. Schaefer, H.J., Haag-Kerwer, A., and Rausch, T. cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy metal accumulator Brassica juncea L., evidence for Cd-induction of putative mitochondrial y-glutamylcysteine synthetase isoform, GenBank accession nos. Y10849, Y10850, Y10851, Y1O852, 1997.

51. Mbeguie, A., Mbeguie, D., Gomez, R-M., and Fils-Lycaon, B. Molecular cloning and nucleotide sequence of an abscisic acid-, ripening-induced (ASR)-like protein from apricot fruit (accession no. 093164). Gene expression during fruit ripening, Plant Physiol., 115, 1288, 1997.

52. Davies, E.C. and Thomas, J.C. A metallothionein from a facultative halophyte confers copper tolerance, GenBank accession no. AFOO0935, 1997.

53. Lee, M.C. et al. Molecular cloning and characterization of metallothionein-like protein in rice, GenBank accession nos. Y08529, 077294, 1996.

54. Yu, L. et al. Characterization of a novel metallothionein-like protein gene with strong expression in the stem of rice, GenBank accession no. ABO02820, 1997.

55. Reid, S.J. and Ross, G.S. Two cDNA clones encoding metallothionein-like proteins in apple are upregulated during cool storage, GenBank accession no. 061974, 1996.

56. Rosenfield, C.L., Kiss, E., and Hrazdina, G. MdACS-2 (Accession No. 073815) and MdACS-3 (Accession No. 073816), two new 1-aminocyclopropane-1-carboxylate synthase in ripening apple fruit, Plant Physiol., 112, 1735. GenBank accession no. Y08322, 1996.

57. Clendennen, S.K. and May, G.D. Differential gene expression in ripening banana fruit, Plant Physiol., 115, 463, 1997.

58. Wiersma, P.A., Wil, Z., and Wilson, S.M. A fruit-related metallothionein-like cDNA clone from sweet cherry (accession no. AF028013) corresponds to fruit genes from diverse species, Plant Physiol., 116, 867, 1998.

59. Murphy, A. et al. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana, Plant Physiol., 113, 1293, 1997.

60. Chatthai, M. The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas fir, regulation by ABA, osmoticum, and metal ions, Plant Mol. Biol., 34, 243, 1997.

61. Aguilar, M. et al. Isolation of a cDNA encoding metallothionein-like protein (Accession No. 081041) from strawberry fruit, Plant Physiol., 113, 664, 1997.

62. Prasad, M.N.V. (Ed.). Heavy Metal Stress in Plants: from Biomolecules to Ecosystems. Springer-Verlag, Heidelberg. 2nd ed., 462, xiv, 2004.

63. Sanita Di Toppi, L., Gremigni, P., Pawlik Skowronska B., Prasad, M.N.V., and Cobbett C.S. Responses to heavy metals in plants — molecular approach, in Abiotic Stresses in Plants. Sanita Di Toppi, L. and Pawlik Skowronska, B. (Eds.). Kluwer Academic Publishers, Dordrecht, 133-156, 2003.

64. Howden, R. and Cobbett, C.S. Cadmium-sensitive mutants of Arabidopsis thaliana, Plant Physiol., 99, 100, 1992.

65. Howden, R. et al. A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana, Plant Physiol., 107, 1067, 1995.

66. Howden, R. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient, Plant Physiol., 107, 1059, 1995.

67. Murphy, A. and Taiz, L. Comparison of metallothionein gene expression and nonproteithiolsinten Arabidopsis ecotypes, Plant Physiol., 109, 945, 1995.

68. Lefebvre, D. D. et al. Mammalian metallothioneins functions in plants, BioTechnology, 5, 1053, 1987.

69. Maiti, I.B., Hunt, A.G., and Wagner, G.J. Seed-transmissible expression of mammalian metallothionein in transgenic tobacco, Biochem. Biophys. Res. Commun., 150, 640, 1988.

70. Maiti, I.B. Inheritance and expression of the mouse metallothionein gene in tobacco, Plant Physiol., 91, 1020, 1989.

71. Maiti, I.B. Light-inducible and tissue-specific expression of a chimeric mouse metallothionein cDNA gene in tobacco, Plant Sci., 76, 99, 1991.

72. Yeargan, R. et al. Tissue partitioning of cadmium in transgenic tobacco seedlings and field grown plants expressing the mouse metallothionein I gene, Transgenic Res., 1, 261, 1992.

73. Brandle, J.E. Field performance and heavy metal concentrations of transgenic ue-cured tobacco expressing a mammalian metallothionein-P-glucuronidase gene fusion, Genome, 36, 255, 1993.

74. Pan, A. Construction of multiple copy of alpha-domain gene fragment of human liver metallothionein IA in tandem arrays and its expression in transgenic tobacco plants, Prot. Eng., 6, 755, 1993.

75. Pan, A. Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants, Plant Mol. Biol., 24, 341, 1994.

76. Elmayan, T. and Tepfer, M. Synthesis of a bifunctional metallothionein P-glucuronidase fusion protein in transgenic tobacco plants as a means of reducing leaf cadmium levels, Plant J., 6, 433, 1994.

77. Hattori, J., Labbe, H., and Miki, B.L. Construction and expression of a metallothionein-beta-glucu-ronidase gene fusion, Genome, 37, 508, 1994.

78. Kramer, U. Cadmium for all meals — plants with an unusual appetite, New Phytol., 145, 1, 2000.

79. Chardonnens, A.N. et al. Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant Silene vulgaris, Plant Physiol., 120, 779, 1999.

80. Kramer, U. Free histidine as a metal chelator in plants that accumulate nickel, Nature, 373, 635, 1996.

81. De La Fuente, J. M. et al. Aluminum Tolerance in Transgenic Plants by Alteration of Citrate Synthesis, Science, 276, 1566-1568, 1997.

82. Vazquez, M.D. et al. Compartmentalization of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl., Bot. Acta, 107, 243, 1994.

83. Clemens, S. et al. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast, EMBO J., 18, 3325, 1999.

84. Zenk, M.H. Heavy metal detoxification in higher plants — a review, Gene, 179, 21, 1996.

85. Sanita Di Toppi, L., Prasad, M.N.V., and Ottonello, S. Metal chelating peptides and proteins in plants, in Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants, Prasad, M.N.V. and Strzaka, K. (Eds.), Kluwer Academic Publishers, Dordrecht, 2002, 59-93.

86. Leustek, T. et al. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies, Annu. Rev. Plant Physiol. Mol. Biol., 51, 141, 2000.

87. Schmoger, M.E.A., Oven, M., and Grill, E. Detoxification of arsenic by phytochelatins in plants, Plant Physiol., 122, 793, 2000.

88. Hartley-Whitaker, J. et al., Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus, Plant Physiol., 126, 299, 2001.

89. Gisbert, C. et al. A plant genetically modified that accumulates Pb is especially promising for phytoremediation, Biochem. Biophys. Res. Commun., 303, 440, 2003.

90. Brown, S.L., Zinc and cadmium uptake by Thlaspi caerulescens and Silene vulgaris grown on sludge-amended soils in relation to total soil metals and soil pH, Environ. Sci. Technol., 29, 1581, 1995.

91. Heaton, A.C.P. et al. Phytoremediation of mercury- and methylmercury-polluted soils using genetically engineered plants, J. Soil Contamination, 7, 497, 1998.

92. Lasat, M.M. et al. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens, J. Exp. Bot., 51, 71, 2000.

93. Ortiz, D.F. et al. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein, J. Biol. Chem., 270, 4721, 1995.

94. Chaney, R.L. et al. Improving metal hyperaccumulator wild plants to develop commercial phytoex-traction systems: approaches and progress, in Terry, N. and Banuelos, G.S. (Eds.). Phytoremediation of Contaminated Soil and Water. CRC Press, Boca Raton, FL, 1999.

95. Summers, A.O. and Sugarman, L.I. Cell-free mercury(II) reducing activity in a plasmid-bearing strain of Escherichia coli, J. Bacteriol., 119, 242, 1974.

96. Rensing, C., Expression of bacterial mercuric ion reductase in Saccharomyces cerevisiae, J. Bacteriol., 174, 1288, 1992.

97. Rugh, C.L. et al. Development of transgenic yellow poplar for mercury phytoremediation, Nat. Biotechnol. 16, 925, 1998.

98. Brewer E. P. et al. Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theoretical and Applied Genetics, 99, 761, 1999.

99. Brown, S.L. et al. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soils, J. Environ. Qual., 23, 1151, 1994.

100. Ebbs, S.D. Heavy metals in the environment. Phytoextraction of cadmium and zinc from a contaminated soil, J. Environ. Qual., 26, 1424, 1997.

101. Chaney, R.L. et al. Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress, in Phytoremediation of Contaminated Soil and Water, Terry, N., Banuelos, G., and Vangronsveld, J. (Eds.). CRC Press, Boca Raton, FL, 2000, 129.

102. Macnair, M.R., Tansley review no. 49. The genetics of metal tolerance in vascular plants, New Phytol., 124, 541, 1993.

103. Stomp, A.M., Han, K.H., Wilbert, S., Gordon, M.P., and Cunningham, S.D. Genetic strategies for enhancing phytoremediation, Ann. NY Acad. Sci., 721, 481, 1994.

104. Raskin, I. Plant genetic engineering may help with environmental cleanup, Proc. Natl. Acad. Sci. USA, 93 3164, 1996.

105. Barcelo, J. and Poschenrieder, C. Phytoremediation: principles and perspectives, Contrib. Sci, 2, 333, 2003, Institit d'Estudis Catalans, Barcelona.

106. Arisi, A.C.M. et al. Responses to cadmium in leaves of transformed poplars overexpressing y-glutamylcysteine synthetase, Plant Physiol., 109, 143, 2000.

107. Raskin, I. and Ensley, B.P. Phytoremediation of Toxic Metals — Using Plants to Clean up the Environment, John Wiley & Sons, New York, 2000.

108. Vatamaniuk, O.K. et al. AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution, Proc. Natl. Acad. Sci. USA, 96, 7110, 1999.

109. Zhu, Y.L. et al. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance, Plant Physiol., 119, 73, 1999.

110. Zhu, Y.L. et al. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing y-glutamyl cysteine synthetase, Plant Physiol., 121, 1169, 1999.

111. Meagher, R.B. Phytoremediaiton of toxic elemental and organic pollutants, Curr. Opin. Plant Biol., 3, 153, 2000.

112. Zhao, H. et al. The yeast ZRT1 gene encodes the zinc transporter protein of a high affinity uptake system induced by zinc limitation, Proc. Natl. Acad. Sci. USA, 93, 2454, 1996.

113. Pence, N.S. et al. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens, Proc. Natl. Acad. Sci. USA, 97, 4956, 2000.

114. El-Bendary, A.A. et al. Mode of inheritance of zinc accumulation in maize, J. Plant Nutr., 16, 2043, 1993.

115. Zhang, F.S. Mobilization of iron and manganese by plant-borne and synthetic metal chelators, in Plant Nutrition — from Genetic Engineering to Field Practice, Barrow, N.J. (Ed.). Kluwer Academic Publishers, Dordrecht, 1993, 115-118.

116. Dong, B., Rengel, Z., and Graham, R.D. Root morphology of wheat genotypes differing in zinc efficiency, J. Plant Nutr., 18, 2761, 1995.

117. Graham, R.D. and Rengel, Z. Genotypic variation in zinc uptake and utilization by plants, in Zinc in Soils and Plants, Robson A.D., (Ed.). Kluwer Academic Publishers, Dordrecht, 1993, 107-118.

118. Pearson, J.N. and Rengel, Z. Mechanisms of plant resistance to nutrient deficiency stresses, in Mechanisms of Environmental Stress Resistance in Plants, Basra, A.S. and Basra, R.K. (Eds.). Har-wood Academic Publishers, The Netherlands, 1997, 213-240.

119. Grotz N. et al. Identification of a family of zinc transporter genes from Arabidopsis thaliana that respond to zinc deficiency, Proc. Natl. Acad. Sci. USA, 95, 7220, 1998.

120. Chen, J. and Goldsbrough, P.B. Increased activity of y-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance, Plant Physiol., 106, 233, 1994.

121. De Knecht, J.A. et al. Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris, Plant Sci., 106, 9, 1995.

122. Theil, E.C. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms, Annu. Rev. Biochem., 56, 289, 1987.

123. Ernst, W.H.O. Physiological and biochemical aspects of metal tolerance, in Effects of Air Pollutants on Plants Mansfield, T.A., (Ed.), Cambridge University Press, Cambridge, 115, 1976.

124. Eide, D. et al. A novel, iron-regulated metal transporter from plants identified by functional expression in yeast, Proc. Natl. Acad. Sci. USA, 93, 5624, 1996.

125. Kampfenkel, K. et al. Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue, J. Biol.Chem, 270, 28, 479, 1995.

126. Eng, B.H. et al. Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins, J. Membrane Biol, 166, 1, 1998.

127. Song, W-Y. et al. Engineering tolerance and accumulation of lead and cadmium in transgenic plants, Nat. Biotechnol., 21, 914, 2003.

128. Lee, J. et al. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals, Plant Physiol., 133, 589, 2003.

129. Henry, J.R. An overview of the phytoremediation of lead and mercury. A report prepared for the U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office., 2003.

130. Li, Z-S. et al. The yeast cadmium factor protein (YCF1) is a vacuolar glutathione s-conjugate pump, J. Biological Chem, 271, 6509, 1996.

131. Arazi, T., Sunkar, R., Kaplan, B., and Fromm, H.A. Tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants, Plant J., 20, 171-182, 1999.

132. Cai, X.H., Bown, C., Adhiya, J., Traina, S.J., and Sayre, R.T. Growth and heavy metal binding properties of transgenic Chlamydomonas expressing a foreign metallothionein, Int. J. Phytorem., 1, 53-65, 1999.

133. Palmer, E.F., Warwick, F., and Keller, W. Brassicaceae (Cruciferae) family, plant biotechnology and phytoremediation, Int. J. Phytoremediation, 3, 245-287, 2001.

134. Pilon-Smits, E.A.H. and Pilon, M. Breeding mercury-breathing plants for environmental cleanup, Trends Plant Sci., 5, 235-236, 2000.

135. Rugh, C.L., Bizily, S.P., and Meagher, R.B. Phytoreduction of environmental mercury pollution, in Phytoremediation of Toxic Metals — Using Plants to Clean up the Environment, Raskin, I. and Ensley, B.D. (Eds.). John Wiley & Sons, Inc., New York, 151-170, 2000.

"Metallomics" — a Multidisciplinary Metal-Assisted Functional Biogeochemistry: Scope and Limitations

Was this article helpful?

0 0

Post a comment