Definition of Anatomical Features

Precondition for a valuable comparison of anatomical structures is the definition and coding of features. Here, we separately define ring distinctness and microscopic features.

Classification of Ring Distinctness after Schweingruber and Poschlod 2005

Type a: Growth-ring numbers can be exactly determined: All ring boundaries are clearly demarcated (Figs. 1-3). In this case the number of observed growth rings corresponds to the true age of the plant tissue. Growth rings in the collar of primary taproots yield the ontogenetic age; growth rings in rhizomes provide the age of the preserved tissue.

Type b: There is some uncertainty in the determination of the age: Clearly demarcated rings are only visible along some radii and some rings may be ill-defined due to tangential intra-annual bands or wedging rings. In such cases, it is important to examine the complete cross section. Fig. 4

Type c: Age determination is uncertain. Ring numbers indicate a rough estimation. Growth zones may either look like annual rings, or be weakly expressed, or only visible in small areas of the cross section. Figs. 5 and 6

Type d: Age cannot be determined: Growth rings are invisible or growth-ring formation is insignificant. Figs. 7 and 8

Type e: The growth zone of annual plants (therophytes) cannot be classified because only one zone is present. When thero-phytes germinate in autumn and flower in the next growing season they form two rings. In this case they may be classified as belonging to any one of the types a, b or c.

Bougainvillea Stem

Fig. 1. Berberis aetnensis, Ber- Fig. 2. Helleborus viridis, Ra-

beridaceae.

nunculaceae.

Fig. 1. Berberis aetnensis, Ber- Fig. 2. Helleborus viridis, Ra-

beridaceae.

Type c nunculaceae.

Fig. 3. Viola odorata, Violaceae.

Fig. 4. Boundary marked by thick-walled fibers in the late-wood and their absence in the earlywood. Loranthus aphyllus, Loranthaceae, dwarf shrub.

Type c

Fig. 4. Boundary marked by thick-walled fibers in the late-wood and their absence in the earlywood. Loranthus aphyllus, Loranthaceae, dwarf shrub.

Wood Anatomy Annual Rings Tamarix

Fig. 5. Radial growth variations marked by zones with fibers of variable cell wall thickness. Ix-anthus viscosus, Gentianaceae, dwarf shrub.

Fig. 6. Annual rings partially indicated by the difference in vessel size between latewood and earlywood. Laserpitium gal-licum, Apiaceae, herb.

Fig. 7. Growth zones absent. Amborella trichopoda, Amborel-laceae, small tree.

Fig. 8. Growth zones absent. Aristolochia gigantea, Aristolo-chiaceae, shrub.

Definition of Features According to the IAWA List (Wheeler et al. 1989), and Complements

2.1 Only one ring. Annual plants = therophytes.

Apiaceae Root Anatomy

Fig. 11. Root collar, without pith. Vessels in tangential bands. Capsella bursa-pastoris, Brassicaceae.

Fig. 9. Root collar, without pith. Very small vessels. Adonis flammea, Ranunculaceae.

Fig. 10. Root collar, without pith. Vessels in radial multiples Fumaria officinalis, Papavera-

Fig. 11. Root collar, without pith. Vessels in tangential bands. Capsella bursa-pastoris, Brassicaceae.

Fig. 12. Root collar, without pith. With pervasive parenchyma in the center. Echium bon-

nettii, vab

Pith Xylem Root Collar

Fig. 13. Root collar, with pith. Vessels are absent in the late-wood. Umbilicus horizontalis, Crassulaceae.

Botanical Garden Definition

Fig. 16. Vascular bundles are connected by inter-vascular fiber zones. Impatiens parviflora, Balsaminaceae.

Fig. 13. Root collar, with pith. Vessels are absent in the late-wood. Umbilicus horizontalis, Crassulaceae.

Fig. 14. Root collar, with pith. Vessel dimorphism. Large vessels in the second part. Calyste-gia sepium, Convolvulaceae.

Fig. 15. Vascular bundles are connected by inter-vascular fiber zones. Lysimachia thyrsi-flora, Primulaceae.

Fig. 16. Vascular bundles are connected by inter-vascular fiber zones. Impatiens parviflora, Balsaminaceae.

Bougainvillea Vascular Bundle
Fig. 17. Vascular bundles are connected by large inter-parenchyma zones. Cucumis sativus, Cucurbitaceae.
Xylary And Extraxylary Fiber Plant

Fig. 18. Vascular bundles are connected by small inter-parenchyma zones. Vicia hirsuta, Fabaceae.

500 |jm

Fig. 18. Vascular bundles are connected by small inter-parenchyma zones. Vicia hirsuta, Fabaceae.

Leptadenia Interxylary Phloem
Fig. 19. Root collar without pith. Groups of inter-xylary phloem in tangential rows. Plan-tago aschersonii. Plantaginaceae.
Xylary Fiber
Fig. 20. Root collar without pith. Bands of inter-xylary phloem. Sagina maritima, Caryophyllaceae.

2.2 Without secondary growth.

2.2 Without secondary growth.

Hydrophyte

Fig. 21. Central vascular bundle with air ducts. Hydrophyte,

Ceratophyllum demersum, Cera-tophyllaceae.

Fig. 21. Central vascular bundle with air ducts. Hydrophyte,

Ceratophyllum demersum, Cera-tophyllaceae.

Fig. 22. Four centrally arranged vascular bundles. Helophyte, Nymphoides peltata, Menyan-thaceae.

Fig. 23. Isolated vascular bundles in a parenchymatic tissue. Rhizome. Anemone ranunculoi-des, Ranunculaceae.

Fig. 24. Isolated vascular bundles in a parenchymatic tissue. Annual shoot. Cistanche tinctoria, Orobanchaceae.

vab vab

Aristolochia Macrophyl

15GG Mm

Fig. 26. Concentric vascular bundles within a parenchy-matic tissue. Primula hirsuta, Primulaceae.

Fig. 25. Isolated vascular bundles in a parenchymatic tissue. Perennial shoot. Drosera capen-sis, Droseraceae.

15GG Mm

Fig. 26. Concentric vascular bundles within a parenchy-matic tissue. Primula hirsuta, Primulaceae.

3 Ring-porous. Vessels in earlywood are 6 to >10x larger in diameter than those in the latewood.

Wood Anatomy Morus Alba

Fig. 28. Morus alba, Moraceae, tree.

Fig. 27. Aristolochia macrophyl-la, Aristolochiaceae, liana.

Fig. 28. Morus alba, Moraceae, tree.

4 Semi-ring-porous. Vessels in earlywood are 3 to 5x larger in diameter than those in the latewood. Transitions between semi-ring-porous and diffuse-porous may occur even within an individual.

Euphorbia Seguieriana
Fig. 29. Aethionema thoma- Fig. 30. Sedum album, Crassu- Fig. 31. Adenolinum lewisii, Fig. 32. Euphorbia seguieriana, siana, Brassicaceae, herb. laceae, herb. Linaceae, herb. Euphorbiaceae, dwarf shrub.

5 Diffuse-porous. Vessels diameter is constant throughout the growth ring.

Ring Porous Definiton
Fig. 33. Ribes alpinum, Grossu- Fig. 34. Aesculus hippocastane-lariaceae, small shrub. um, Sapindaceae, tree.

6 Vessels in intra-annual tangential rows. See also Figs. 11, 95 and 152.

Definition Anatomic
Fig. 35. Ulmus laevis, Ulma- Fig. 36. Enkianthus campanula-ceae, tree. tus, Ericaceae, shrub.

7 Vessels in diagonal and/or radial patterns. Transitions between diagonal and dendritic distribution exist within an individual.

7 Vessels in diagonal and/or radial patterns. Transitions between diagonal and dendritic distribution exist within an individual.

Dendritic Pattern Arteries

Fig. 37. Mahonia bealei, Ber- Fig. 38. Quercus cerris, Faga-beridaceae, shrub. ceae, tree.

250 Mm ujL>I I

Fig. 37. Mahonia bealei, Ber- Fig. 38. Quercus cerris, Faga-beridaceae, shrub. ceae, tree.

9 Vessels predominantly solitary. See also Figs. 101 and 120.

9 Vessels predominantly solitary. See also Figs. 101 and 120.

Anatomy Stem Zygophyllum Album

Fig. 41. Silene maritima, Fig. 42. Zygophyllum fontane-Caryophyllaceae, herb. sii, Zygophyllaceae, succulent chamaephyte.

Fig. 41. Silene maritima, Fig. 42. Zygophyllum fontane-Caryophyllaceae, herb. sii, Zygophyllaceae, succulent chamaephyte.

8 Vessels in dendritic patterns. Transitions between diagonal vessel distribution and semi-ring-porosity exist within an individual.

8 Vessels in dendritic patterns. Transitions between diagonal vessel distribution and semi-ring-porosity exist within an individual.

Genista Wood Anatomy

Fig. 39. Berberis julianae, Ber- Fig. 40. Genista radiata, Faba-

beridaceae, herb.

ceae, shrub.

Fig. 39. Berberis julianae, Ber- Fig. 40. Genista radiata, Faba-

beridaceae, herb.

ceae, shrub.

9.1 Vessels in radial multiples of 2 to 4 common. See also Figs. 95 and 117.

9.1 Vessels in radial multiples of 2 to 4 common. See also Figs. 95 and 117.

Atriplex Patula
Fig. 43. Atriplex patula, Ama- Fig. 44. Populus suaveolens, Sal-ranthaceae, annual herb. icaceae, tree.

10 Vessels in radial multiples of 4 or more common. See also Fig. 10.

10 Vessels in radial multiples of 4 or more common. See also Fig. 10.

Perforation Plate Botany
Fig. 45. Erodium ciconium, Ge- Fig. 46. Asperugo procumbens, raniaceae, annual herb. Boraginaceae, annual herb.

11 Vessels predominantly in clusters. Groups of 3 or more vessels having both radial and tangential contacts.

11 Vessels predominantly in clusters. Groups of 3 or more vessels having both radial and tangential contacts.

Fig. 47. Euphorbia nicaeensis, Fig. 4S. Malva moschata, Mal-Euphorbiaceae, herb. vaceae, herb.

13 Vessels with simple perforation plates. Perforation plate with a single circular or elliptical opening.

Vessel Perforation Plate Acacia

Fig. 49. Euphorbia piscatoria, Fig. 50. Parthenocissus inserta, Euphorbiaceae, shrub. Vitaceae, herb.

14 Vessels with scalariform perforation plates. Numbers of bars are of some taxonomic value. Transitions to scalariform in-tervessel pits occur. See also Fig. 92.

Perforation Plate

Fig. 51. Perforation plate with Fig. 52. Scalariform perforation >10 bars. Ribes alpinum, Gros- plates with 1-3 bars. Tolpis fruti-sulariaceae, shrub. cosa, Asteraceae, dwarf shrub.

Fig. 49. Euphorbia piscatoria, Fig. 50. Parthenocissus inserta, Euphorbiaceae, shrub. Vitaceae, herb.

Fig. 51. Perforation plate with Fig. 52. Scalariform perforation >10 bars. Ribes alpinum, Gros- plates with 1-3 bars. Tolpis fruti-sulariaceae, shrub. cosa, Asteraceae, dwarf shrub.

20 Intervessel pits scalariform. Pits with horizontally elongated apertures. See also Fig. 92.

20 Intervessel pits scalariform. Pits with horizontally elongated apertures. See also Fig. 92.

Scalariform Vessels Microscopic

Fig. 53. Viola calcarata, Viola- Fig. 54. Parthenocissus tricuspi-

dara, Vitaceae, climber.

20.1 Intervessel pits pseudoscalariform to reticulate. Pits with enlarged apertures.

Anatomy Orobanchaceae

Fig. 55. Aeonium urbicum, Fig. 56. Orobanche canescens, Crassulaceae, dwarf shrub. Orobanchaceae, annual herb.

Fig. 53. Viola calcarata, Viola- Fig. 54. Parthenocissus tricuspi-

dara, Vitaceae, climber.

Fig. 55. Aeonium urbicum, Fig. 56. Orobanche canescens, Crassulaceae, dwarf shrub. Orobanchaceae, annual herb.

21 Intervessel pits opposite. Arranged in horizontal rows across the length of the vessel.

ivp ivp ivp ivp

Definition Anatomic

Fig. 59. Reseda suffruticosa, Fig. 60. Salix planifolia, Salica-Resedaceae, shrub. ceae, shrub.

Fig. 57. Regular formed pits. Fig. 58. Irregular formed pits. Platanus orientalis, Platanaceae, Impatiens noli-tangere, Balsami-tree. naceae, annual herb.

22 Intervessel pits alternate. Arranged irregularly or in diagonal rows.

ivp ivp

Fig. 59. Reseda suffruticosa, Fig. 60. Salix planifolia, Salica-Resedaceae, shrub. ceae, shrub.

31 Vessel-ray pits with large round apertures, Laurus type. Summarized are all forms from large round to irregular and to reticulate.

vrp vrp

32 Vessel-ray pits with large horizontal apertures, Hamameli-daceae type. All forms with one to several pits in one vessel-ray cross-field.

vrp vrp

Olea Europaea Microscope Pictures Wood

Fig. 61. Olea europaea ssp. cus- Fig. 62. Laurus nobilis, Laura-pidata, Oleaceae, large shrub. ceae, tree.

Hamamelidaceae, shrub.

vrp vrp

Spiral Vessels Plant Tissue Definition

Fig. 63. Fothergilla gardeni, Fig. 64. Fagus orientalis, Faga-

ceae, tree.

Fig. 61. Olea europaea ssp. cus- Fig. 62. Laurus nobilis, Laura-pidata, Oleaceae, large shrub. ceae, tree.

Fig. 63. Fothergilla gardeni, Fig. 64. Fagus orientalis, Faga-

Hamamelidaceae, shrub.

ceae, tree.

36 Helical thickenings present. All types of thickenings e.g. very thin and thick spirals in small and large vessels.

Spiral Vessels Plant Tissue Definition

39.1 Vessel cell-wall thickness >2 pm. Cell walls are thick in relation to the surrounding tissue. See also Fig. 113.

39.1 Vessel cell-wall thickness >2 pm. Cell walls are thick in relation to the surrounding tissue. See also Fig. 113.

Spiral Vessels Plant Tissue Definition

Fig. 67. Pulsatilla vulgaris, Ra- Fig. 68. Armeria arenaria, nunculaceae, herb.

Plumbaginaceae, herb.

Fig. 65. Nandina domestica, Fig. 66. Corylus avellana, Betu-Berberidaceae, shrub. laceae, shrub.

Fig. 67. Pulsatilla vulgaris, Ra- Fig. 68. Armeria arenaria, nunculaceae, herb.

Plumbaginaceae, herb.

40.1 Earlywood vessels: tangential diameter <20 pm. See also Fig. 30.

Spiral Vessels Plant Tissue Definition

Fig. 72. Kleinia neriifolia, As-teraceae, succulent.

Fig. 69. Arenaria ciliata, Caryo- Fig. 70. Neatostema apulum, phyllaceae, herb. Boraginaceae, annual herb.

40.2 Earlywood vessels: tangential diameter 20-50 pm. See also Fig. 31.

Fig. 71. Paeonia suffruticosa, Paeoniaceae, shrub.

Fig. 72. Kleinia neriifolia, As-teraceae, succulent.

41 Earlywood vessels: tangential diameter 50-100 pm. See also Figs. 47 and 48.

42 Earlywood vessels: tangential diameter 100-200 pm.

ewv ewv

Microscopic Live Phloem Cells Lianna

Fig. 75. Aristolochia macrophyl- Fig. 76. Sinofranchetia chinen-

la, Aristolochiaceae, liana.

sis, Lardizabalaceae, liana.

Fig. 73. Cakile maritima, Bras- Fig. 74. Nonea erecta, Boragi-sicaceae, herb. naceae, herb.

Fig. 75. Aristolochia macrophyl- Fig. 76. Sinofranchetia chinen-

la, Aristolochiaceae, liana.

sis, Lardizabalaceae, liana.

50 <100 vessels per mm2 in earlywood.

Vessel counting is unambiguous in structures with a more or less regular vessel distribution e.g. Figs. 71 and 77. Problems arise in types with isolated vascular bundles e.g. Figs. 23 and 24. In such cases the vessels within the vascular bundle are counted. Vessel numbers are also difficult to determine in ring porous woods (Fig. 28) or types with irregular vessel distribution (Figs. 40 and 85).

50.1 100-200 vessels per mm2 in earlywood. See Figs. 95 and 96.

50.2 200-1000 vessels per mm2 in earlywood. See Figs. 30 and 41.

50.2 200-1000 vessels per mm2 in earlywood. See Figs. 30 and 41.

Plant Tylosis
Fig. 77. Andromeda polifolia, Fig. 78. Castilleja arctica, Oro-Ericaceae, dwarf shrub. banchaceae, hemicryptophyte.

ewv ewv

56 Tylosis with thin walls common. They are mostly unlignified and blue-stained.

Aristolochia Stem Druses Parenchyma

Fig. 79. Cissus quadrangularis, Fig. 80. Aristolochia clematitis, Vitaceae, succulent liana. Aristolochiaceae, herb.

Fig. 79. Cissus quadrangularis, Fig. 80. Aristolochia clematitis, Vitaceae, succulent liana. Aristolochiaceae, herb.

58 Dark-stained substances in vessels and/or fibers present (gum, tannins).

ds ds

Definition Anatomic

Fig. 81. Eriogonum ovalifolium, Polygonaceae, herb.

Fig. 81. Eriogonum ovalifolium, Polygonaceae, herb.

Fig. 82. Arbutus canariensis, Ericaceae, tree.

59 Vessels absent or indistinguishable from fibers. Xylem without vessels composed of only imperforate tracheary elements (Fig. 83) or vessels absent in the fiber zone of the latewood (Fig. 84).

60 Vascular/vasicentric tracheids, Daphne type. Vessels are surrounded by tracheids.

Definition Xylem

Fig. 83. Trochodendron araloi- Fig. 84. Jovibarba hirta, Crassu-des, Trochodendraceae, tree. laceae, succulent plant.

j • i •

it

m . f r: V ♦

.y'

V i

.: M

*; '.til. sjggfl

•i" :

«

'•.'•r fv» .. 4FÄ

Fig. 83. Trochodendron araloi- Fig. 84. Jovibarba hirta, Crassu-des, Trochodendraceae, tree. laceae, succulent plant.

Fig. 85. Daphne striata, Thyme- Fig. 86. Osmanthus decorus, laeaceae, dwarf shrub. Oleaceae, shrub.

60.1 Fibers absent. Xylem without fibers; composed of only parenchyma and vessels. See Figs. 67 and 68.

61 Fiber pits small and simple to minutely bordered (<3 pm = libriform fibers).

Rit tS

Xylem Vessel Dwarf Tapeworm

Fig. 89. Fumaria officinalis, Pa- Fig. 90. Betula glandulosa, Bet-

paveraceae, herb.

ulaceae, shrub.

Fig. 87. Cerastium arvense, Fig. 88. Campanula beckiana, Caryophyllaceae, herb. Campanulaceae, herb.

Fig. 89. Fumaria officinalis, Pa- Fig. 90. Betula glandulosa, Bet-

paveraceae, herb.

ulaceae, shrub.

tr tr

62 Fiber pits large and distinctly bordered (>3 pm = fiber trac-heids). See also Fig. 58.

62 Fiber pits large and distinctly bordered (>3 pm = fiber trac-heids). See also Fig. 58.

65 Septate fibers present. Fibers with thin, mostly unlignified, transverse walls.

Septated Fiber Cells Plants

Buxaceae, small shrub.

caceae, shrub.

Fig. 93. Hypericum inodorum, Fig. 94. Berberis julianae, Ber-

Clusiaceae, shrub.

beridaceae, shrub.

Fig. 91. Sarcococca hookeriana, Fig. 92. Gaultheria shalon, Eri-

Buxaceae, small shrub.

caceae, shrub.

65 Septate fibers present. Fibers with thin, mostly unlignified, transverse walls.

Fig. 93. Hypericum inodorum, Fig. 94. Berberis julianae, Ber-

Clusiaceae, shrub.

beridaceae, shrub.

67 Thick- and thin-walled fiber bands, Acer type.

68 Fibers thin-walled. Fiber lumina 3 or more times wider than the double wall thickness.

Orobanchaceae Tree

Brassicaceae, herb.

daceae, tree.

Fig. 97. Rhinanthus glacialis, Fig. 98. Ledum decumbens, Eri-Orobanchaceae, parasite. caceae, dwarf shrub.

Fig. 95. Lepidium campestre, Fig. 96. Acer tataricum, Sapin-

Brassicaceae, herb.

daceae, tree.

Fig. 97. Rhinanthus glacialis, Fig. 98. Ledum decumbens, Eri-Orobanchaceae, parasite. caceae, dwarf shrub.

69 Fibers thick-walled. Fiber lumina almost completely closed. See also Figs. 4 and 119.

70 Fibers thin- to thick-walled. Fiber lumina less than 3 times the double wall thickness, distinct lumina. See Figs. 109 and 115. f

69 Fibers thick-walled. Fiber lumina almost completely closed. See also Figs. 4 and 119.

70 Fibers thin- to thick-walled. Fiber lumina less than 3 times the double wall thickness, distinct lumina. See Figs. 109 and 115. f

Calligonum

Fig. 101. Calligonum comosum, Fig. 102. Thesium bavarum, Polygonaceae, shrub. Santalaceae, herb.

Fig. 99. Limonium pectinatum, Fig. 100. Syringa vulgaris, Ole-Plumbaginaceae, herb. aceae, shrub.

Fig. 101. Calligonum comosum, Fig. 102. Thesium bavarum, Polygonaceae, shrub. Santalaceae, herb.

70.1 Intra-annual thick-walled tangential fiber bands. Fiber bands (red) are located between fiber-less zones (blue).

Calligonum Comosum Plant
Fig. 103. Dianthus seguieri, Fig. 104. Matthiola fruticulosa, Caryophyllaceae, herb. With Brassicaceae, herb. With lateral continuous bands. interrupted bands.

70.2 Fibers contain tension wood. Gelatinous, unlignified, blue secondary walls in fibers.

70.2 Fibers contain tension wood. Gelatinous, unlignified, blue secondary walls in fibers.

Safranin Botany

Fig. 106. Trochodendron arali-oides, Trochodendraceae, small

Fig. 105. Sycopsis sinensis, Hamamelidaceae, shrub.

Fig. 106. Trochodendron arali-oides, Trochodendraceae, small tree.

75 Parenchyma absent or unrecognizable. Parenchyma cells unrecognizable in Safranin/Astrablue stained slides.

Viola Elatior
Fig. 107. Viola elatior, Viola- Fig. 108. Euphorbia maculata, ceae, herb. Unlignified fibers. Euphorbiaceae, herb.

79 Parenchyma paratracheal. Axial parenchyma associated with vessels.

Fig. 111. Eriogonum trichopes, Polygonaceae, herb. Parenchyma vasicentric.

Fig. 111. Eriogonum trichopes, Polygonaceae, herb. Parenchyma vasicentric.

Fig. 112. Clematis flammula, Ranunculaceae, herb. Parenchyma vasicentric in groups.

76 Parenchyma apotracheal, diffuse in aggregates. Parenchyma cells single or grouped into short discontinuous tangential or oblique lines. See also Fig. 75.

Hedera Lix Safranin
Fig. 109. Apollonias barbujana, Fig. 110. Hedera helix, Aralia-Lauraceae, tree. ceae, climber.

79.1 Parenchyma pervasive. The ground tissue consists exclusively of thin-walled, unlignified parenchyma. See also Figs. 67 and 68.

Fig. 113. Pulsatilla montana, Fig. 114. Polemonium coerulea, Ranunculaceae, herb. Polemoniaceae, herb.

79.2 Parenchyma intervascular, Crassulaceae type. Isolated groups of vessels are surrounded by parenchyma and occur in a dense fiber tissue (Carlquist 2001).

pa v

79.2 Parenchyma intervascular, Crassulaceae type. Isolated groups of vessels are surrounded by parenchyma and occur in a dense fiber tissue (Carlquist 2001).

pa v

Fig. 115. Aeonium viscatum, Fig. 116. Thymelaea hirsuta, Crassulaceae, dwarf shrub. Thymelaeaceae, shrub.

85 Axial parenchyma bands more than three cells wide, Ficus/ Urtica type.

Fig. 117. Ficus sycomorus, Fig. 118. Urtica urens, Urtica-Moraceae, tree. ceae, herb.

89 Parenchyma marginal. Parenchyma bands form continuous layer in late- or earlywood. Cell walls can be lignified or unlignified.

Diplotaxis Tenuifolia Microscope

Fig. 119. Vella spinosa ssp. lu- Fig. 120. Diplotaxis tenuifolia, centina, Brassicaceae, dwarf Brassicaceae, herb. Marginal shrub. Marginal terminal. initial.

89.1 Parenchyma marginal thin-walled; dark in polarized light. Parenchyma cells without secondary walls do not reflect polarized light and appear as dark zones.

Fig. 119. Vella spinosa ssp. lu- Fig. 120. Diplotaxis tenuifolia, centina, Brassicaceae, dwarf Brassicaceae, herb. Marginal shrub. Marginal terminal. initial.

Fig. 121. Alyssum argenteum, Fig. 122. Urtica dioica, Urtica-Brassicaceae, herb. ceae, herb.

89.2 Ring shake, Saxifraga type. During mechanical stress, drought or preparation procedure rings or compartments of rings fall apart.

Botanical Garden Definition

Fig. 123. Saxifraga moschata, Saxifragaceae, herb. Fig. 124. Geum glaciale, Rosa-

ceae, herb.

Fig. 123. Saxifraga moschata, Saxifragaceae, herb. Fig. 124. Geum glaciale, Rosa-

ceae, herb.

97 Rays width 1-3 cells.

97 Rays width 1-3 cells.

Fig. 126. Eriogonum inflatum, Polygonaceae, herb.

Fig. 125. Euphorbia echinus, Euphorbiaceae, shrub.

Fig. 126. Eriogonum inflatum, Polygonaceae, herb.

98 Rays commonly 4-10-seri-ate.

98 Rays commonly 4-10-seri-ate.

Parthenocissus Inserta
Fig. 127. Parthenocissus inserta, Vitaceae, liana.

99 Rays commonly >10-seri-ate.

99 Rays commonly >10-seri-ate.

Fig. 128. Brassica nigra, Bras-sicaceae, herb.

99.1 Vascular-bundle form remaining. Vascular bundles are separated by pith-like parenchyma cells. It lacks a continuous fiber/vessel zone. See also Figs. 8 and 29.

99.2 Stem fluted.

99.1 Vascular-bundle form remaining. Vascular bundles are separated by pith-like parenchyma cells. It lacks a continuous fiber/vessel zone. See also Figs. 8 and 29.

Fig. 129. Sempervivum tecto- Fig. 130. Ecballium elaterinum, rum, Crassulaceae, herb. Cucurbitaceae, creeping liana.

Chamephytes

Fig. 131. Eriogonum jamesii, Fig. 132. Satureja montana, La-Polygonaceae, chamaephyte. miaceae, chamaephyte.

Fig. 129. Sempervivum tecto- Fig. 130. Ecballium elaterinum, rum, Crassulaceae, herb. Cucurbitaceae, creeping liana.

Fig. 131. Eriogonum jamesii, Fig. 132. Satureja montana, La-Polygonaceae, chamaephyte. miaceae, chamaephyte.

100.1 Rays confluent with ground tissue. Lateral borders of rays merge with axial tissue.

100.1 Rays confluent with ground tissue. Lateral borders of rays merge with axial tissue.

Definition Anatomic

Fig. 133. Geranium columbi- Fig. 134. Sedum anopetalum, num, Geraniaceae, herb.

Crassulaceae, herb.

100.2 Rays not visible in polarized light.

SPVSf' 1 Mmmmi

100.2 Rays not visible in polarized light.

Fig. 135. Clematis recta, Ra- Fig. 136. Sisymbrium austria-

nunculaceae, herb. Dark strips cum, Brassicaceae, herb. Thin-

represent thin-walled parenchy- walled, unlignified ray cells do matic ray tissue. not reflect polarized light.

Fig. 133. Geranium columbi- Fig. 134. Sedum anopetalum, num, Geraniaceae, herb.

Crassulaceae, herb.

Fig. 135. Clematis recta, Ra- Fig. 136. Sisymbrium austria-

nunculaceae, herb. Dark strips cum, Brassicaceae, herb. Thin-

represent thin-walled parenchy- walled, unlignified ray cells do matic ray tissue. not reflect polarized light.

101 Aggregate rays: vessel-free zone with many rays.

101 Aggregate rays: vessel-free zone with many rays.

Fig. 137. Corylus mandshurica, Betulaceae, shrub.

102 Ray height > 1 mm. Large rays normally exceed 1 mm in height. See also Fig. 127.

Fig. 138. Tamarix articulata, Tamaricaceae, small tree.

103 Rays of two distinct sizes. Rays uni- and 2-seriate. See also Fig. 126.

Lloje Qelizash
Fig. 139. Gaultheria shalon, Ericaceae, shrub.

104 Ray homocellular, all cells procumbent (radial section).

Homocellular Heterocellular Rays
Fig. 140.

105 Ray homocellular, all cells upright or square. There are frequently transitions between Feature 106, 107 and 108.

106 Ray heterocellular with 1 upright cell row (radial section).

107 Ray heterocellular with 2-4 upright cell rows (radial section).

108 Ray heterocellular with > 4 upright cell rows (radial section).

Wood Anatomical Features

110 Rays with sheet cells (tangential section). Cells located along sides of broad rays, larger than central ray cells.

117 Rayless wood only with axial elements. Identification of this feature is only possible using tangential sections. In cross-sections ray cells with the same form as fibers or parenchyma can be mistaken for ray absence.

Fig. 146. Umbilicus horizontalis, Crassulaceae, herb. With short, thin-walled, lignified fibers.

Fig. 146. Umbilicus horizontalis, Crassulaceae, herb. With short, thin-walled, lignified fibers.

Fig. 147. Silene viscaria, Caryo-phyllaceae, herb. With short, thin-walled, unlignified fibers.

" fife

irJIlMW

Fig. 148. Sedum reflexum, Crassu-laceae, herb. Relatively long, thick-walled, lignified fibers.

120 Storied axial tissue (parenchyma, fibers, vessels in tangential section). Cells oriented in horizontal series.

124 Oil and mucilage cells and canals.

50 Mm

Fig. 149. Hippophae rhamnoi- Fig. 150. Tamarix articulata, des, Eleagnaceae, shrub. Tamaricaceae, tree.

HI flR

50 Mm

124 Oil and mucilage cells and canals.

'oil cell

Fig. 151. Laurus azorica, Lau raceae, tree. Oil cells at the mar gins of rays.

Fig. 152. Lavatera assurgentiflo-ra, Malvaceae, shrub. Mucilage canals.

Fig. 149. Hippophae rhamnoi- Fig. 150. Tamarix articulata, des, Eleagnaceae, shrub. Tamaricaceae, tree.

'oil cell

Fig. 151. Laurus azorica, Lau raceae, tree. Oil cells at the mar gins of rays.

Fig. 152. Lavatera assurgentiflo-ra, Malvaceae, shrub. Mucilage canals.

129 Axial canals in the xylem. Tubular intercellular ducts mostly surrounded by epithelium. See Fig. 21.

130 Radial canals in the xylem. duct duct

MfiW

130 Radial canals in the xylem. duct duct

MfiW

Arbutus Xylem

Fig. 155. Euphorbia pulcher- Fig. 156. Euphorbia schimperi, rima, Euphorbiaceae, shrub. Euphorbiaceae, succulent shrub.

Fig. 153. Cardopatium corymbo- Fig. 154. Nuphar lutea, Nym-sum, Asteraceae, herb. Air duct. phaeaceae, herb. Air duct.

133 Successive cambia, Caryophyllaceae type. Large irregular bands of unlignified parenchyma and phloem cells within the stem.

Fig. 155. Euphorbia pulcher- Fig. 156. Euphorbia schimperi, rima, Euphorbiaceae, shrub. Euphorbiaceae, succulent shrub.

133.1 Successive cambia: Concentrically arranged single vascular bundles. Vascular bundles, consisting of xylem and phloem, are separated by parenchyma cells.

133.1 Successive cambia: Concentrically arranged single vascular bundles. Vascular bundles, consisting of xylem and phloem, are separated by parenchyma cells.

Single Stem Succulent Type Garden Plants
Fig. 157. Polycarpaea aristata, Fig. 158. Sagina maritima, Caryophyllaceae, Paronychioi- Caryophyllaceae, Alsionideae, deae, herb. herb.

Fig. 159. Chenopodium glau- Fig. 160. Bosea cypria, Amaran-cum, Amaranthaceae, herb. thaceae, liana.

133.2 Successive cambia: Concentric continuous. The successive cambia produce tangential bands of lignified xylem and radial strips of unlignified parenchyma and phloem. See also Figs. 43 and 165.

Foraminate Phloem
Fig. 161. Atrip lex semibaccata, Fig. 162. Aizoon canariense, Ai-Amaranthaceae herb. zoaceae, herb.

134 Successive cambia: Diffuse = foraminate. More or less irregularly arranged vascular bundles are located in a conjunctive tissue.

134 Successive cambia: Diffuse = foraminate. More or less irregularly arranged vascular bundles are located in a conjunctive tissue.

Successive Cambia

pa f

Fig. 163. Aoea mucronata, Am-aranthaceae, dwarf shrub.

pa f

Fig. 163. Aoea mucronata, Am-aranthaceae, dwarf shrub.

Amaranthaceae, dwarf shrub.

134.1 Conjunctive tissue thin-walled. Tissue between phloem strands and fibre bands is thin-walled and unlignified.

135 Interxylary phloem present.

ph ph

Interxylary Phloem

Fig. 165. Einadia nutans, Ama- Fig. 166. Anabasis brevifolia, ranthaceae, herb. Amaranthaceae, annual herb.

135 Interxylary phloem present.

Interxylary Phloem

Fig. 168. Leptadenia pyrotech-nica, Asclepiadaceae, shrub. Large groups of sieve tubes, surrounded by parenchyma.

Fig. 165. Einadia nutans, Ama- Fig. 166. Anabasis brevifolia, ranthaceae, herb. Amaranthaceae, annual herb.

Fig. 167. Ixanthus viscosus, Gentianaceae, dwarf shrub. Small groups of sieve tubes within the xylem.

Fig. 168. Leptadenia pyrotech-nica, Asclepiadaceae, shrub. Large groups of sieve tubes, surrounded by parenchyma.

135.1 Interxylary periderm (cork band).

135.1 Interxylary periderm (cork band).

Interxylary Periderm

Fig. 169. Epilobium angustifoli- Fig. 170. Artemisia tridentata, As-um, Onagraceae, herb. Cork band teraceae, shrub. between living and dead xylem.

136 Prismatic crystals present. Solitary rhombohedral or octahedral crystals composed of calcium oxalate.

Fig. 169. Epilobium angustifoli- Fig. 170. Artemisia tridentata, As-um, Onagraceae, herb. Cork band teraceae, shrub. between living and dead xylem.

Berberis Aetnensis
Fig. 171. Berberis julianae, Ber- Fig. 172. Proustia cuneifolia, beridaceae, shrub. Prismatic Asteraceae, shrub. crystals in ray cells.

142 Prismatic crystals in axial chambered cells.

Interxylary Cork
cry
Prismatic Crystals Plants

Fig. 173. Suaeda vermiculata, Fig. 174. Acer obtusifolium, Sa-Amaranthaceae, dwarf shrub. pindaceae, tree

111 [ft

Fig. 173. Suaeda vermiculata, Fig. 174. Acer obtusifolium, Sa-Amaranthaceae, dwarf shrub. pindaceae, tree

144 Druses present. A compound, irregular, star-like crystal. See Figs. 197, 198 and 203.

Fig. 175. Euonymus sp., Celas- Fig. 176. Astrantia major, Apia-

traceae, shrub.

149 Rhaphides present. Bundles of needle-like crystals. See also Fig. 203.

153 Crystal sand present. Small, irregular crystals.

Of nrran

153 Crystal sand present. Small, irregular crystals.

Suaeda Moquinii

Fig. 179. Traganum moquinii, Fig. 180. Piper nigrum, Pipera-Amaranthaceae, shrub. Small ceae, shrub. Many small crys-crystals at the inside of vessels. tals isolated and in clusters in parenchyma cells.

Fig. 177. Asperula aristata, Ru- Fig. 178. Bougainvillea specta-biaceae, herb. Raphids in idio- bilis, Nyctaginaceae, liana. Type blasts. with long needles.

Fig. 179. Traganum moquinii, Fig. 180. Piper nigrum, Pipera-Amaranthaceae, shrub. Small ceae, shrub. Many small crys-crystals at the inside of vessels. tals isolated and in clusters in parenchyma cells.

Was this article helpful?

+3 0
Insider Nutrition Secrets

Insider Nutrition Secrets

Secrets To Living Longer And Healthier Revealed By Nutrition Scientist! Insider Nutrition Secrets. Have you ever wondered what it might be like to find the long lost Fountain of Youth? We cant promise you that, but we can give you a close second. Starting today, learn the facts about what your body really needs to survive longer and healthier. Discover insider information from a former food and drug expert. Learn how a new food or drug is developed from the beginning until it finally reaches your grocers shelves.

Get My Free Ebook


Responses

  • kane
    What is the defination of anatomical features of wood?
    2 years ago

Post a comment